PISIER’S K—CONVEXITY INEQUALITY: AN EXPOSITION

NILAVA METYA

We aim to show the bound K (X) < log(1l + dpam(X,¢5")) on the K—convexity constant
K (X) of an m—dimensional Banach space (X, ||-|| ).

1. PRELIMINARIES

Rademacher Projection. Consider the cube E™ = {£1}" with the uniform measure
p. Then Lo(E™, p) is a Hilbert space whose orthonormal basis is the set {wa | A C n}
of Walsch functions as described next. The Rademacher functions r; : E" — {£1} are
given by r;(€) = ri(e1,--+ ,€,) = €;. For any subset A C [n] define the Walsch function
wy : E" — {£1} as wa(e) == [] ri(e) with the agreement that wy = 1. Any function f :
icA
E™ — X (with (X, ||-|| y) a Banach space) can be written as f(z) = Z f(Awa(z)Vz e E
AC[n

Z a(e)f(e)ule) =
eck
37 > wa(€)f(€). The Rademacher projection is the operator Rad, : Ly(E™; X) — Lao(E™; X)

ecE"

where the Fourier coefficients f(A) € X are determined by f(A)

defined by Rad,(f) = (:1: > z{:]f({z})w{l}( )= f{i}x ) Note that Lo(E™; X) is

i€[n]
the space of all X —valued functions on E" with the norm || f||;, gn.x) = > > f(x). The
’ LISy D
K —convexity constant of X is

K(X) = sup ||Radn||L2(E";X)—>L2(E";X)
and we say X is K —convex if K(X) < oc.

Convolutions. We will consider E™ as a group, for Fourier analysis, with coordinate-wise
multiplication. Thatis, ifx = (x1,-- ,2,),y = (Y1, ,yn) € E" thenzy = (x1y1, -+, Tn, Yn)-
The identity is simply 1, the all-ones vector, and the inverse of £ € E" is itself. Convolution
is a powerful tool when it comes to Fourier analysis. Fix a Banach space (X, |-||). The
convolution of f: E” — X and h : E™ — R is given by

[ h(z) =E.[f(ze)h(e)] = 1 Z f(ze)h(e).

Date: April 2025.



2

Note that the expectation is taken with respect to the uniform measure on the boolean cube.

The fact that ze 2 ¢, for a fixed z € E", allows us to write f * h(z) = E. [f(e)h(ze)]. The
intuition that Rad, is the ‘linear’ part is captured by the fact that Rad,f = f * ¢ where

(= Zw{l} Indeed, f* ((x) =) Z f €)e: vi =Y f({i})z; = Rad,(f)(=).
i€[n]

i€[n]ecEm
fih
An interesting way that that Fourier analysis interacts with convolutions is that it is the natu—
ral way for preserving multiplicative structure, in the sense that fxg(z Z f (z).
ACn

In other words, m(A) — f(A)§(A). This is due to the orthonormality of the Walsch
characters. We will also use the following fact about ‘sub-multiplicativity of norms’ under
convolutions, which has been proved in Appendix A.1.

Lemma 1. Let f: E™ — X, h: E™ — R. Then

1 * Pl Ly nixy S Wl Lyenixy 1MLy my -

A highly nonlinear approximation to (. Recall the ‘almost moving delta mass’ with

real parameter t: a(z) = a(t,z) = H (1 + ta;) Z il (x). The large powers of t
=1 ACIn

works in our favour to help ignore the terms larger tha[n] 1. However, we will play around

a bit with « to get precisely what we need. Consider the function ¢,(0) = @% on

[0,27]. Consider I, == {£2% | k€ [0,4r —1]NZ} and A, = T, \ {0,7} each equipped

with the uniform measure, where r is an odd integer parameter to be decided later. As well

as the function g,(z) = Ega, [¢r(0)a (222, z)]. Expanding we get

o0 (0 (sige) |A|] oA
S0 G1(4) = 2Eses, [1:(0) (3",

sin 6
9r(x) = 2Epa, [@r(e)a ( )] =2 Z Ega,
The following facts, proven in Appendix A.2, help showing that ¢ linearly approximates g;:

AC[n]

Proposition 2. (a) Egon, [gor(ﬁ) sin® 9} =01 for 0 <k <r.
(b) Egen, [lor(0)]] < 4r.

Corollary 3. §.(A) =01 if 0 < |A| <7 and [§,(A)] < 5% if |A] > 7.

Proof. The equality case directly follows from Proposition 2(a).
Now say |A| > 7. Then [§.(A)| < 575 E [|¢,(0)]] < 557 - 4r = 5= by Proposition 2(b). |



Corollary 4. ||gr||L1(En) =Ec [|g-(e)]] < 8r.

Proof.

Ec [|g:(€)]] < EcEgpon,

ﬁ(1+81n9 )

1

~.

- s1n9 sin @
= ]EGNAT]E |g07~ |H ( )] 14 5 g >0

=1

on(6 rHE( e )]

Proposition 2(b)
“Eoa O] S

.

= Epn,

Banach-Mazur distance.

Definition 5. If E, F' are isomorphic Banach spaces, their Banach-Mazur distance is

d(E, F) = dpy(E, F) == inf {HTH Al ‘ TE5 F} .

For finite dimensional Banach spaces X, we want to look at their distances' from a Hilbert
space H of the same dimension which will be used for bounding norms of convolutions. We
will be specially interested in H = /3" where m = dim X.

Let f: E™ — X,h : E™ — R. Consider the Fourier representation h = »_ , h(A)wy. Fix
any Hilbert space H isomorphic to X, and let D = dpy (X, H). For any € > 0, 17T =

T. : X 5 H such that ||T]|||T7Y|| < (1 +&)D. Note that f*h = 3, f(A)h(A)w, with
f(A) € X,h(A) € R and wy : E" — {#1} are the Walsch functions, ¥ A C [n]. So
T(f«h)=> 4T(fa)h(A)ws. We thus have

||f * h||L2(En;X) = HT_l oT o (f * h>HL2(E”;X)

< HT_IH |T(f * h)||L2(E";H)

1Warning;: dp 1s not an honest metric
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<77 <max

AC|n]

H

i) \/Z i)

= (s [0 ) NI i

AC|n]

< (s [0 ) T NI 1

AC|n]

< (49D (1 [o)] ) 1o -

Since this is true V & > 0, we conclude that

Lemma 6. Let f : E" — X, h : E" — R, where X is m—dimensional, and consider the
Fourier representation h =) , h(A)wa. Then

16 5 Bl < A5 (e 0] )10

AC|n]

2. THE FINAL PROOF
We have established g, = Zg( Jwy = Zw{l} + Z Jwa with [g(A)] < % (small)
A

i€[n] [Al>r

for [A] > r. Letting ¢ == 37,4, §(A)wa, we have g, = £ +1),. We note that bo(4) =
0 if [A[<r
g(A) ifr<|A<n

Hf *EHLQ(ETL;X)' Let D = d(X’ gglmX>

Thus, g, and ¢ are ‘close’ functions. Now let’s start bounding

Firstly note that

1 *£||L2(E”;X) = |f* (9 — 7vbr)”LQ(En;X)
<|f *gTHLQ(E”;X) +|If * ¢r||L2(En;X)

5] ) U oz

[Lemma 6]

= (Orbsaomy 2 (s [0 ) ) 1

g([ & 4+ D- 4r.2’”‘>\|f|\L2(E;;X)

Corollary 3] [Corollary 3]

=8r (1 + D - 2_(T+1)) ||f||L2(Eg;X) :

>~ ||f||L2 En;X) ||gTHL1(En +D <max

[Lemma 1]
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To complete the proof, choose r to be an odd number such that 27! < D 4+ 1 < 2" so
that 8r(1+ D - 270+) < 8(lg(1+ D) +1) (1+ 52+) S lg(1 + D) thus proving that
| Radn|| 1, gn.x) 1o (mnx) S 18(1+ D) V n. This means K(X) S 1g(1 +d(X, (gim XYy,

To get a more quantitative bound, we can use John’s theorem which states that d(X, £4™mX) <
Vvdim X, thus giving K(X) < logdim X.
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APPENDIX A.

A.1. Proof of Lemma 1. We want to show || f Al ., gn.x) < | fll 1, mm.x) 11, (-
15 bl oy = [ 117 i)
— [ 1B e Sl dz
~ [ @ nE) @) ds
— [ (B [VIR@N - VIRET el ]) do
Cauchy-Schwarz 9
<[ e B e 1w ) dz
~ B (@) B @) [ 1@l da

~ B (@)} E. Ine)] [ 7@l aa]
= EhE) [ @ dz

2 2
= ||h||L1(E") ”f||L2(E2;X) :

A.2. Proof of Proposition 2.
(a) We first want to show Ega, [gpr(ﬁ) sin® 9} =01 for 0 <k <r.

e Say k= 0. p(f) = —p(2m — ) and since the expectation is taken with respect
to the uniform measure and for every 8 € A,, we also have 2r — 0 € A,, the
statement is true for k = 0.

e Say k = 1. We will show Egy..n, [¢-(0)sinf] = 1 by inducting on odd r. For now,
just consider the sum

: 17"6 —27’9

Sln(T&) _ 150 —i(r—1—4)0
" = 0 0 e - e

sin 6 e —et

0eA, beA, 9eA, j=0
r—1 r—1
=D D = Y ety
0eA, j=0 j=0 feA,
= Z Z =0 1 cos((2f — r 4 1)n)
~———

j=0 \#6er, even



j=0 \oel', j=0 #€el’,.

Recall that for any integer z, Y o €™ = 4r -1z = 0 (mod 4r)] because
[', divides 27 into 4r equally spaced angles, whence the above sum becomes

1 o —1 in(r¢
4y — Qr = 2r. Thus, EQNAT [907"<9) sin 9] = Ay — 9 ’ TT Z SISI;SGQ) =1
ISANS

For k > 2 we consider ¢ = k — 2 € [0,7 — 2] N Z and are interested in
1 1
.k . . . o . . y .
Egoa, [¢r(0)sin® 0] = > E sin(rf) sin? 6 = 3 E sin(rf) sin? 0. Let’s instead

0, ocrl',

eir@ - e—ir@ ei@ - e—ie q
look at E sin(rf) sin? § = E ( 5 ) ( 5 ) . For each 6 € T',,
i i

0eT, 0T,
a typical term in the expansion of the power looks like (upto constants in C)

e®2i=9) for j = 0,1,--- ,¢. Combining with the first bracket gives a typical term
like ¢¥(%7=9%1) 25 — ¢ 4 1 is always in [—2r, 2r] so all terms on expansion, after
Z are 0, unless 2j —g+r =0forsome 0 < 7 < g <r—2. If 2)—g—r =0 then
fer,

0>2j—2q9g=r+q >0, acontradiction. If 2j —g+r =0then0 < j=qg—7r <0,
a contradiction again. Hence all terms have their exponent nonzero modulo 4r,
hence zero.

(b) Next we come to showing Ega, [|¢-(0)|] < 4r. Recall that ¢,(0) = 2r=1500) here

r  sin?60

0 takes the values 2= for k € [4r — 1] \ {2r}. By the symmetry of 6 in all four

coordinates to account for the fact that we only want to look at |sin2 0|, we have
4 2r—1g 1 2 o 72 2
Eg- ()] < . < - —<2r-— <4
ot O] < 5 - = ;sz(%_rl;jg_ o<

where we used the inequality sint > %t for 0 <t < 3

us
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