
PISIER’S K−CONVEXITY INEQUALITY: AN EXPOSITION

NILAVA METYA

We aim to show the bound K(X) ≲ log(1 + dBM(X, ℓm2 )) on the K−convexity constant
K(X) of an m−dimensional Banach space (X, ∥·∥X).

1. Preliminaries

Rademacher Projection. Consider the cube En = {±1}n with the uniform measure
µ. Then L2(E

n, µ) is a Hilbert space whose orthonormal basis is the set {wA | A ⊆ n}
of Walsch functions as described next. The Rademacher functions ri : En → {±1} are
given by ri(εεε) = ri(ε1, · · · , εn) := εi. For any subset A ⊆ [n] define the Walsch function
wA : En → {±1} as wA(εεε) :=

∏
i∈A

ri(εεε) with the agreement that w∅ ≡ 1. Any function f :

En → X (with (X, ∥·∥X) a Banach space) can be written as f(xxx) =
∑

A⊆[n]

f̂(A)wA(xxx) ∀ xxx ∈ En

where the Fourier coefficients f̂(A) ∈ X are determined by f̂(A) =
∑

εεε∈En

wA(εεε)f(εεε)µ(εεε) =

1
2n

∑
εεε∈En

wA(εεε)f(εεε). The Rademacher projection is the operatorRadn : L2(E
n;X) → L2(E

n;X)

defined by Radn(f) :=

(
xxx 7→

∑
i∈[n]

f̂ ({i})w{i}(xxx) =
∑
i∈[n]

f̂ ({i})xi

)
. Note that L2(E

n;X) is

the space of all X−valued functions on En with the norm ∥f∥L2(En;X) =
√

1
2n

∑
xxx∈En

f(xxx). The

K−convexity constant of X is

K(X) = sup
n

∥Radn∥L2(En;X)→L2(En;X)

and we say X is K−convex if K(X) <∞.

Convolutions. We will consider En as a group, for Fourier analysis, with coordinate-wise
multiplication. That is, if xxx = (x1, · · · , xn), yyy = (y1, · · · , yn) ∈ En then xxxyyy = (x1y1, · · · , xn, yn).
The identity is simply 111, the all-ones vector, and the inverse of xxx ∈ En is itself. Convolution
is a powerful tool when it comes to Fourier analysis. Fix a Banach space (X, ∥·∥). The
convolution of f : En → X and h : En → R is given by

f ∗ h(xxx) := Eεεε [f(xxxεεε)h(εεε)] =
1

2n

∑
εεε∈En

f(xxxεεε)h(εεε).

Date: April 2025.
1



2

Note that the expectation is taken with respect to the uniform measure on the boolean cube.
The fact that xxxεεε D

= εεε, for a fixed xxx ∈ En, allows us to write f ∗ h(xxx) = Eεεε [f(εεε)h(xxxεεε)]. The
intuition that Radn is the ‘linear’ part is captured by the fact that Radnf = f ∗ ℓ where

ℓ :=
n∑

i=1

w{i}. Indeed, f ∗ ℓ(xxx) =
∑
i∈[n]

∑
εεε∈En

f(εεε)εi
2n︸ ︷︷ ︸

f̂({i})

xi =
∑
i∈[n]

f̂({i})xi = Radn(f)(xxx).

An interesting way that that Fourier analysis interacts with convolutions is that it is the natu-
ral way for preserving multiplicative structure, in the sense that f∗g(xxx) =

∑
A⊆n

f̂(A)ĝ(A)wA(xxx).

In other words, f̂ ∗ g(A) = f̂(A)ĝ(A). This is due to the orthonormality of the Walsch
characters. We will also use the following fact about ‘sub-multiplicativity of norms’ under
convolutions, which has been proved in Appendix A.1.

Lemma 1. Let f : En → X, h : En → R. Then

∥f ∗ h∥L2(En;X) ≤ ∥f∥L2(En;X) ∥h∥L1(En) .

A highly nonlinear approximation to ℓ. Recall the ‘almost moving delta mass’ with

real parameter t: α(xxx) = α(t,xxx) :=
n∏

i=1

(1 + txi) =
∑
A⊆[n]

t|A|wA(xxx). The large powers of t

works in our favour to help ignore the terms larger than 1. However, we will play around
a bit with α to get precisely what we need. Consider the function φr(θ) := 2r−1

r
sin(rθ)

sin2 θ
on

[0, 2π]. Consider Γr :=
{

k·2π
4r

∣∣ k ∈ [0, 4r − 1] ∩ Z
}

and ∆r = Γr ∖ {0, π} each equipped
with the uniform measure, where r is an odd integer parameter to be decided later. As well
as the function gr(xxx) = Eθ∼∆r

[
φr(θ)α

(
sin θ
2
,xxx
)]

. Expanding we get

gr(xxx) = 2Eθ∼∆r

[
φr(θ)α

(
sin θ

2
,xxx

)]
= 2

∑
A⊆[n]

Eθ∼∆r

[
φr(θ)

(
sin θ

2

)|A|
]
wA(xxx).

So ĝr(A) = 2Eθ∼∆r

[
φr(θ)

(
sin θ
2

)|A|
]
.

The following facts, proven in Appendix A.2, help showing that g linearly approximates g1:

Proposition 2. (a) Eθ∼∆r

[
φr(θ) sin

k θ
]
= δk,1 for 0 ≤ k ≤ r.

(b) Eθ∼∆r [|φr(θ)|] ≤ 4r.

Corollary 3. ĝr(A) = δk,1 if 0 ≤ |A| ≤ r and |ĝr(A)| ≤ 4r
2r

if |A| > r.

Proof. The equality case directly follows from Proposition 2(a).
Now say |A| > r. Then |ĝr(A)| ≤ 2

2|A|E [|φr(θ)|] ≤ 2
2r+1 · 4r = 4r

2r
by Proposition 2(b). ■
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Corollary 4. ∥gr∥L1(En) = Eεεε [|gr(εεε)|] ≤ 8r.

Proof.

1

2
Eεεε [|gr(εεε)|] ≤ EεεεEθ∼∆r

[∣∣∣∣∣φr(θ)
n∏

i=1

(
1 +

sin θ

2
εi

)∣∣∣∣∣
]

= Eθ∼∆rEεεε

[
|φr(θ)|

n∏
i=1

(
1 +

sin θ

2
εi

)]
∵ 1 +

sin θ

2
εi > 0

= Eθ∼∆r

[
|φr(θ)|

n∏
i=1

Eεεε

(
1 +

sin θ

2
εi

)]

= Eθ∼∆r [|φr(θ)|]
Proposition 2(b)

≤ 4r.

■

Banach-Mazur distance.

Definition 5. If E,F are isomorphic Banach spaces, their Banach-Mazur distance is

d(E,F ) = dBM(E,F ) := inf
{
∥T∥ ·

∥∥T−1
∥∥ ∣∣∣ T : E

∼→ F
}
.

For finite dimensional Banach spaces X, we want to look at their distances1 from a Hilbert
space H of the same dimension which will be used for bounding norms of convolutions. We
will be specially interested in H = ℓm2 where m := dimX.

Let f : En → X, h : En → R. Consider the Fourier representation h =
∑

A ĥ(A)wA. Fix
any Hilbert space H isomorphic to X, and let D := dBM(X,H). For any ε > 0,∃ T =

Tε : X
∼→ H such that ∥T∥ ∥T−1∥ ≤ (1 + ε)D. Note that f ∗ h =

∑
A f̂(A)ĥ(A)wA with

f̂(A) ∈ X, ĥ(A) ∈ R and wA : En → {±1} are the Walsch functions, ∀ A ⊆ [n]. So
T (f ∗ h) =

∑
A T (f̂A)ĥ(A)wA. We thus have

∥f ∗ h∥L2(En;X) =
∥∥T−1 ◦ T ◦ (f ∗ h)

∥∥
L2(En;X)

≤
∥∥T−1

∥∥ ∥T (f ∗ h)∥L2(En;H)

=
∥∥T−1

∥∥√∑
A

∥∥∥ĥ(A)T (f̂(A))∥∥∥2
H

=
∥∥T−1

∥∥√∑
A

∣∣∣ĥ(A)∣∣∣ ∥∥∥T (f̂(A))∥∥∥2
H

1warning: dBM is not an honest metric
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≤
∥∥T−1

∥∥ (max
A⊆[n]

∣∣∣ĥ(A)∣∣∣)√∑
A

∥∥∥T (f̂(A))∥∥∥2
H

=

(
max
A⊆[n]

∣∣∣ĥ(A)∣∣∣) ∥∥T−1
∥∥ ∥T (f)∥L2(En

2 ;H)

≤
(
max
A⊆[n]

∣∣∣ĥ(A)∣∣∣) ∥∥T−1
∥∥ ∥T∥ ∥f∥L2(En

2 ;X)

≤ (1 + ε)D

(
max
A⊆[n]

∣∣∣ĥ(A)∣∣∣) ∥f∥L2(En
2 ;X) .

Since this is true ∀ ε > 0, we conclude that

Lemma 6. Let f : En → X, h : En → R, where X is m−dimensional, and consider the
Fourier representation h =

∑
A ĥ(A)wA. Then

∥f ∗ h∥L2(En;X) ≤ d(X, ℓm2 )

(
max
A⊆[n]

∣∣∣ĥ(A)∣∣∣) ∥f∥L2(En
2 ;X) .

2. The Final Proof

We have established gr =
∑
A

ĝ(A)wA =
∑
i∈[n]

w{i} +
∑
|A|>r

ĝ(A)wA with |ĝ(A)| ≤ 4r
2r

(small)

for |A| > r. Letting ψr :=
∑

|A|>r ĝ(A)wA, we have gr = ℓ + ψr. We note that ψ̂r(A) ={
0 if |A| ≤ r

ĝ(A) if r < |A| ≤ n
. Thus, gr and ℓ are ‘close’ functions. Now let’s start bounding

∥f ∗ ℓ∥L2(En;X). Let D := d(X, ℓdimX
2 ).

Firstly note that

∥f ∗ ℓ∥L2(En;X) = ∥f ∗ (gr − ψr)∥L2(En;X)

≤ ∥f ∗ gr∥L2(En;X) + ∥f ∗ ψr∥L2(En;X)

≤ ∥f∥L2(En;X) ∥gr∥L1(En)

[Lemma 1]

+D

(
max
A⊆[n]

∣∣∣ψ̂r(A)
∣∣∣) ∥f∥L2(En

2 ;X)

[Lemma 6]

=

(
∥gr∥L1(En) +D

(
max
A⊆[n]

∣∣∣ψ̂r(A)
∣∣∣)) ∥f∥L2(En

2 ;X)

≤
(

8r
[Corollary 3]

+D · 4r · 2−r

[Corollary 3]

)
∥f∥L2(En

2 ;X)

= 8r
(
1 +D · 2−(r+1)

)
∥f∥L2(En

2 ;X) .
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To complete the proof, choose r to be an odd number such that 2r−1 ≤ D + 1 ≤ 2r so
that 8r(1 + D · 2−(1+r)) ≤ 8 (lg(1 +D) + 1)

(
1 + D

2(D+1)

)
≲ lg(1 + D) thus proving that

∥Radn∥L2(En;X)→L2(En;X) ≲ lg(1 +D) ∀ n. This means K(X) ≲ lg(1 + d(X, ℓdimX
2 )).

To get a more quantitative bound, we can use John’s theorem which states that d(X, ℓdimX
2 ) ≤√

dimX, thus giving K(X) ≲ log dimX.
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Appendix A.

A.1. Proof of Lemma 1. We want to show ∥f ∗ h∥L2(En;X) ≤ ∥f∥L2(En;X) ∥h∥L1(En).

∥f ∗ h∥2L2(En;X) =

∫
En

∥f ∗ h(xxx)∥2X dxxx

=

∫
En

∥Eεεε [h(εεε)f(xxxεεε)]∥2X dxxx

=

∫
En

(Eεεε [|h(εεε)| ∥f(xxxεεε)∥X ])
2 dxxx

=

∫
En

(
Eεεε

[√
|h(εεε)| ·

√
|h(εεε)| ∥f(xxxεεε)∥X

])2
dxxx

Cauchy-Schwarz
≤

∫
En

Eεεε [|h(εεε)|] · Eεεε

[
|h(εεε)| ∥f(xxxεεε)∥2X

]
dxxx

= Eεεε [|h(εεε)|] · Eεεε

[
|h(εεε)|

∫
En

∥f(xxxεεε)∥2X dxxx

]
= Eεεε [|h(εεε)|] · Eεεε

[
|h(εεε)|

∫
En

∥f(xxx)∥2X dxxx

]
= (Eεεε [|h(εεε)|])2

∫
En

∥f(xxx)∥2X dxxx

= ∥h∥2L1(En) ∥f∥
2
L2(E2;X) .

■

A.2. Proof of Proposition 2.

(a) We first want to show Eθ∼∆r

[
φr(θ) sin

k θ
]
= δk,1 for 0 ≤ k ≤ r.

• Say k = 0. φ(θ) = −φ(2π − θ) and since the expectation is taken with respect
to the uniform measure and for every θ ∈ ∆r, we also have 2π − θ ∈ ∆r, the
statement is true for k = 0.

• Say k = 1. We will show Eθ∼∆r [φr(θ) sin θ] = 1 by inducting on odd r. For now,
just consider the sum∑
θ∈∆r

sin(rθ)

sin θ
=
∑
θ∈∆r

eirθ − e−irθ

eiθ − e−iθ
=
∑
θ∈∆r

r−1∑
j=0

eijθ · e−i(r−1−j)θ

=
∑
θ∈∆r

r−1∑
j=0

ei(2j−r+1)θ =
r−1∑
j=0

∑
θ∈∆r

ei(2j−r+1)θ

=
r−1∑
j=0

∑
θ∈Γr

ei(2j−r+1)θ − 1− cos((2j − r + 1︸ ︷︷ ︸
even

)π)
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=
r−1∑
j=0

(∑
θ∈Γr

ei(2j−r+1)θ − 2

)
=

r−1∑
j=0

∑
θ∈Γr

ei(2j−r+1)θ − 2r.

Recall that for any integer x,
∑

θ∈Γr
eixθ = 4r · 111[x ≡ 0 (mod 4r)] because

Γr divides 2π into 4r equally spaced angles, whence the above sum becomes

4r − 2r = 2r. Thus, Eθ∼∆r [φr(θ) sin θ] =
1

4r − 2
· 2r − 1

r

∑
θ∈∆r

sin(rθ)

sin θ
= 1.

• For k ≥ 2 we consider q = k − 2 ∈ [0, r − 2] ∩ Z and are interested in

Eθ∼∆r

[
φr(θ) sin

k θ
]
=

1

2r

∑
θ∈∆r

sin(rθ) sinq θ =
1

2r

∑
θ∈Γr

sin(rθ) sinq θ. Let’s instead

look at
∑
θ∈Γr

sin(rθ) sinq θ =
∑
θ∈Γr

(
eirθ − e−irθ

2i

)(
eiθ − e−iθ

2i

)q

. For each θ ∈ Γr,

a typical term in the expansion of the power looks like (upto constants in C)
eiθ(2j−q) for j = 0, 1, · · · , q. Combining with the first bracket gives a typical term
like eiθ(2j−q±r). 2j − q ± r is always in [−2r, 2r] so all terms on expansion, after∑
θ∈Γr

are 0, unless 2j−q±r = 0 for some 0 ≤ j ≤ q ≤ r−2. If 2j−q−r = 0 then

0 ≥ 2j−2q = r+q > 0, a contradiction. If 2j−q+r = 0 then 0 ≤ j = q−r < 0,
a contradiction again. Hence all terms have their exponent nonzero modulo 4r,
hence zero.

(b) Next we come to showing Eθ∼∆r [|φr(θ)|] ≤ 4r. Recall that φr(θ) =
2r−1
r

sin(rθ)

sin2 θ
where

θ takes the values 2πk
4r

for k ∈ [4r − 1] ∖ {2r}. By the symmetry of θ in all four
coordinates to account for the fact that we only want to look at

∣∣sin2 θ
∣∣, we have

Eθ∼∆r [|φr(θ)|] ≤
4

4r − 2
· 2r − 1

r

r∑
k=1

1

sin2
(
2πk
4r

) ≤ 2

r

r∑
k=1

r2

j2
≤ 2r · π

2

6
≤ 4r

where we used the inequality sin t ≥ 2
π
t for 0 ≤ t ≤ π

2
.
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