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1 Representation spaces
Fix a quiver Q = (Q0, Q1, s, t) and a dimension vector nnn = (ni)i∈Q0 .

Definition 1 (Representation space). The representation space of the quiver
Q for the dimension vector nnn is

Rep(Q,nnn) :=
⊕

{i→j}∈Q1

Matni×nj(k).

This is called the representation space because every point x ∈ Rep(Q,nnn)
corresponds to a representation Vx of Q with dimension vector nnn. Clearly
dimRep(Q,nnn) =

∑
{i→j}∈Q1

ninj. An object xxx ∈ Rep(Q,nnn) with be denoted by

(xα)(i α→j)∈Q1
where xα ∈ Hom(kns(α) , knt(α)). The group

GL(nnn) :=
∏
i∈Q0

GL(ni)

acts on each Matni×nj(k) by (gi)i∈Q0 · xα = gjxαg
−1
i , and thus extends to an

action on Rep(Q,nnn). It is not hard to see that k∗ ∼= k∗(111ni)i∈Q0 is a normal
subgroup of GL(nnn) and acts trivially on Rep(Q,nnn). This gives an action of
PGL(nnn) = GL(nnn)/k∗ on Rep(Q,nnn). We note that the representations Vx, Vy
for two points x, y ∈ Rep(Q,nnn) are isomorphic iff x, y are in the same orbit

∗Most material in the notes is basically copied from the mentioned reference article
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of GL(nnn) (equivalently, PGL(nnn)). This is made more formal and informative
in the following lemma:

Lemma 1.1. The assignment x 7→ Vx gives a one-one correspondence be-
tween the orbits GL(nnn) acting on Rep(Q,nnn) and the set of isomorphism
classes of representations of Q with dimension vector nnn. The stabilizer or
the isotropy group GL(nnn)x = {g ∈ GL(nnn) : g · x = x} is isomorphic to the
automorphism group AutQ(Vx).

Example 1.2. Consider the following quiver

k kn

α2
α1

···
αr

where 1, n denote the dimensions at the respective vertices, so our dimension
vector is nnn = (1, n). Call it Hr. Then a typical point in Rep(Hr,nnn) looks
like (M,M1, · · · ,Mr) where X ∈ Matn×1(k) = kn,Mi ∈ Matn×n(k). Here
GL(nnn) = GL(1)×GL(n) = k∗ ×GL(n) whose action on Rep(Hr,nnn) is given
by (c, g) · (M,M1, · · · ,Mr) = (gMt−1, gM1g

−1, · · · , gMrg
−1). Such a point

corresponds to a representation

k kn

M1 M2

···
Mr

M

The isomorphism classes of representations of the above quiver with the afore-
mentioned dimension vector is parameterized by the orbits of the action of
GL(n) = {1} ×GL(n) (not just GL(nnn)) because (t, g) and (1, t−1g) have the
same action. Basically the action of the k∗ component in GL(nnn) is insignif-
icant in the sense that (Mt−1,M1, · · · ,Mn) and (M,M1, · · · ,Mn) belong to
the same orbit − we can go from the former to the latter by the action of
(t−1, Id). Alternately, such a representation is described by a k−algebra ho-
momorphism f : k 〈X1, · · · , Xn〉 → Matn×n(k), Xi 7→ Mi, together with an
element M ∈ kn.

We will call an element (M,M1, · · · ,Mr) cyclic if M generates kn as a
k 〈X1, · · · , Xr〉−module. Collect all such cyclic elements to form the set
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Rep(Hr,nnn)
cyc. It is clear that Rep(Hr,nnn)

cyc is GL(n)−stable. Further if
MMM = (M,M1, · · · ,Mr) is a cyclic tuple, then GL(n)MMM is trivial. This is
seen as follows: If (MMM) is cyclic, then there are constants λ(j)i ∈ k such
that

∑
i λ

(j)
i MiM = eeej ∈ kn. If g ∈ GL(n)MMM then geeej =

∑
i λ

(j)
i gMiM =∑

i λ
(j)
i MigM =

∑
i λ

(j)
i MiM = eeej. Since this is true for every coordinate

vector, we must have g = Id.

Let’s talk about the orbit space Rep(Hr,nnn)
cyc/GL(n). Here we will view the

points of representation space as an algebra homomorphism k 〈X1, · · · , Xr〉 →
Matn×n(k) together with an element of kn. This means Rep(Hr,nnn)

cyc =
{(f, v) ∈ Hom (k 〈X1, · · · , Xr〉 ,Matn×n(k))× kn : f (k 〈Xi〉) v = kn}. Note that
Two points (M,µ), (N, ν) ∈ Rep(Hr,nnn)

cyc are in the same orbit iff M = gN
and µ(Xi) = gν(Xi)g

−1 for some g ∈ GL(n). Just to repeat, µ, ν are alge-
bra homomorphisms of the above type. Given any (f, v) ∈ Rep(Hr,nnn)

cyc,
we can put a ring structure on kn given as follows: for u1, u2 ∈ kn there
are polynomials P1, P2 ∈ k 〈X1, · · · , Xr〉 such that f(Pi)v = ui, and so define
u1u2 = f(P1P2)v.1 The kernel is I(f, v) = {P ∈ k 〈X1 · · · , Xn〉 : f(P )v = 0}.
One should check that the following is a bijective correspondence between
Rep(Hr,nnn)

cyc/GL(n) and {left ideals ⊆ k[X1, · · · , Xn] of codimension n}:

(f, v) 7→ I(f, v)

(P 7→ (π(Q) 7→ π(PQ)), π(1))←[ I

PQ− P ′Q = PQ− PQ′ + PQ′ − P ′Q = PQ′ − P ′Q

Definition 2. An (affine) algebraic group is an (affine) algebraic variety G
equipped with a group structure such that the multiplication map G×G→ G
and the inverse map G→ G are morphisms of varieties.
An algebraic action of an algebraic group G on a variety X is a group action
G×X → X which is also a morphism of varieties.

Proposition 1.3. Let G have an algebraic action on a variety X. Fix x ∈ X.

(a) Gx = {g ∈ G : g · x = x} is closed in G.

(b) G · x is a locally closed, non-singular subvariety of X. All connected
components of G · x have dimension dimG− dimGx.

1I couldn’t verify that this is well defined because of the non-commutativity of the Xi’s.
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(c) The orbit closure G · x is the union of G · x and of orbits of smaller
dimension; it contains at least one closed orbit.

(d) The variety G is connected if and only if it is irreducible; then the orbit
G · x and its closure are irreducible as well.

Now consider a group homomorphism ϕ : G → H of algebraic groups. This
gives an action of G on H given by g · h := ϕ(g)h. This is an algebraic
action and its orbits are G · h = (Imϕ) · h. There is at least one closed
orbit (contained in (Imϕ) · h for some h ∈ H). But the orbits are permuted
transitively by the action of H on tiself by right multiplication, thus implying
that all orbits (that is, cosets) are closed. This means Imϕ is closed. Now
note that G1H = {g ∈ G : ϕ(g) = 1} = kerϕ, which is also closed. Thus
kerϕ, Imϕ are closed in G,H respectively. Finally we get that dim Imϕ =
dim(G · 1H) = dimG− dimG1H = dimG− dimkerϕ.

2 Isotropy groups
Proposition 2.1. Let M be a finite-dimensional representation of Q.

(a) The automorphism group AutQ(M) is an open affine subset of EndQ(M).
As a consequence, AutQ(M) is a connected linear algebraic group.

(b) There exists a decomposition AutQ(M) ∼= U o
r∏
i=1

GL(mi) where U

is a s a closed normal unipotent subgroup and m1, · · · ,mr denote the
multiplicities of the indecomposable summands of M .

We will allude to a theorem for finite-dimensional representations of associa-
tive algebras, and leave it as an exercise to the reader to prove proposition 2.1.

Theorem 2.2. Let M be a finite-dimensional module over an algebra A.
Then there is a decomposition of A-modules

M ∼=
r⊕
i=1

Mmi
i

where M1, · · · ,Mr are indecomposable and pairwise non-isomorphic, and
m1, · · · ,mr are positive integers. Moreover, the indecomposable summands
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Mi and their multiplicities mi are uniquely determined up to reordering. We
also have a decomposition of vector spaces

EndA(M) ∼= I ⊕
r∏
i=1

Matmi×mi(k)

where I is a nilpotent ideal.

Proof sketch of proposition 2.1. The first part is immediate by the observa-
tion that AutQ(M) = EndQ(M)r V (det) = D(det).

For the next part, we start with the split surjective algebra-homomorphism

EndQ(M) → EndQ(M)/I ∼=
r∏
i=1

Matmi×mi(k) which, in turn, gives a split

surjective algebra-homomorphism AutQ(M) →
r∏
i=1

GL(mi). The kernel of

this map is IdM +I. Thus, IdM +I is a closed connected normal subgroup of
AutQ(M).
Next consider the linear action of IdM +I on k IdM ⊕I by left multiplication.
Since the orbit of IdM is isomorphic to the affine space IdM +I, this action
yields a closed embedding IdM +I ↪→ GL(k IdM ⊕I). The powers In form
a decreasing filtration of the vector space k IdM ⊕I, and they stabilize to
0. Any In is stable under the action of I + IdM and this action fixes the
associated grades In/In+1 and the quotient (k IdM ⊕I)/I. This establishes
IdM +I as a unipotent subgroup of GL(k IdM ⊕I), by choosing a basis of
k IdM ⊕I compatible with the filtration (In)n≥1. �

Corollary 2.3. The representation Vx, for x ∈ Rep(Q,nnn) is is indecompos-
able if and only if the isotropy group GL(nnn)x is the semi-direct product of a
unipotent subgroup with the group k∗ Idnnn; equivalently, PGL(nnn)x is unipotent.

Now, when studying homological aspects, one comes across the following
exact sequence

0→ EndQ(M)→
∏
i∈Q0

End(Vi)→
∏
α∈Q1

Hom(Vs(α), Vt(α))→ Ext1Q(M,M)→ 0.

The above discussion helps put this exact sequence in a nice geometric frame-
work.
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Theorem 2.4. Let x ∈ Rep(Q,nnn) and denote by M = Vx the corresponding
representation of Q.

(a) There is an exact sequence

0 −→ EndQ(M) −→ End(nnn)
cx−→ Rep(Q,nnn) −→ Ext1Q(M,M) −→ 0

with cx((fi)i∈Q0) = (ft(α)xα − xαfs(α))α.

(b) cx may be identified with the differential at the identity of the orbit map
ϕx : GL(nnn)→ Rep(Q,nnn), g 7→ g · x.

(c) The image of cx is the Zariski tangent space Tx (GL(nnn) · x) viewed as a
subspace of Tx (Rep(Q,nnn)) ∼= Rep(Q,nnn).

Proof.(b) GL(nnn) ⊂
open

End(nnn). So the Zariski tangent space2 to this group at

Idnnn may be identified with the vector space End(nnn). The tangent space
to AutQ(M) at Idnnn is EndQ(M). The action of GL(nnn) is given by

GL(ni)×GL(nj) −→ Matni×nj(k)

(g, h) 7−→ hxi→jg
−1

cx immediately comes from the differential of this map

Matni×ni ×Matnj×nj −→ Matni×nj(k)

(fi, fj) 7−→ fjxi→j − xi→jfi.

(c) From proposition 1.3 we get dim(GL(nnn) · x) = dimGL(nnn) − dimGL(nnn)x.
But dim(GL(nnn) · x) = dim [Tx(GL(nnn) · x)]. But GL(nnn)x comprise of the
invertible intertwiners for the module M = Vx, and thus dimGL(nnn)x =
dimAutQ(M) = dimEndQ(M). Also dimGL(nnn) = dimEnd(nnn). The
last two equalities follow from the fact that GL ⊂

open
End which is propo-

sition 2.1. Combining these gives dim [Tx(GL(nnn) · x)] = dimEnd(nnn) −
dimEndQ(M). By (b) and the above exact sequence, ker cx = EndQ(M).
This means that Tx(GL(nnn) · x) is the entire image of cx.

�

2This is a technical term which can be defined without using differential geometry
concepts and simply by linearizing things using ‘abstract’ algebra.
A similar definition in this spirit is the tangent space for a local ring (R,m) which is
m/m2− this essentially keeps only linear terms.
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