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1 Representation spaces

Fix a quiver Q = (Qo, @1, s,t) and a dimension vector n = (n;);eq,-

Definition 1 (Representation space). The representation space of the quiver
@ for the dimension vector n is

Rep(Q,n) = @ Mat, xn,; (k).
{i=jte@:

This is called the representation space because every point = € Rep(Q,n)
corresponds to a representation V, of () with dimension vector n. Clearly
dim Rep(Q,n) = Z n;nj. An object € Rep(Q),n) with be denoted by

{i=j}e@
(wa)(iﬁj)te where 2, € Hom(k"s(@, k™). The group

GL(n) = H GL(n;)

1€Qo

acts on each Maty,xn, (k) By (9i)icq, - Ta = gjxagi_l, and thus extends to an
action on Rep(Q,n). It is not hard to see that k* = k*(1,,);eq, is a normal
subgroup of GL(n) and acts trivially on Rep(Q@,n). This gives an action of
PGL(n) = GL(n)/k* on Rep(Q,n). We note that the representations V,, V,

for two points z,y € Rep(Q,n) are isomorphic iff x,y are in the same orbit

*Most material in the notes is basically copied from the mentioned reference article



of GL(n) (equivalently, PGL(n)). This is made more formal and informative
in the following lemma:

Lemma 1.1. The assignment x — V, gives a one-one correspondence be-
tween the orbits GL(n) acting on Rep(Q,n) and the set of isomorphism
classes of representations of () with dimension vector m. The stabilizer or
the isotropy group GL(n), = {g € GL(n) : g -x =z} is isomorphic to the
automorphism group Autg(V;).

Example 1.2. Consider the following quiver
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where 1,n denote the dimensions at the respective vertices, so our dimension
vector is n = (1,n). Call it H,. Then a typical point in Rep(H,,n) looks
like (M, My, -+, M,) where X € Mat, (k) = k™, M; € Mat,x,(k). Here
GL(n) = GL(1) x GL(n) = k* x GL(n) whose action on Rep(H,,n) is given
by (c,g) - (M, My,--- ,M,) = (gMt=* gMyg~",--- ,gM,g~"). Such a point
corresponds to a representation
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The isomorphism classes of representations of the above quiver with the afore-
mentioned dimension vector is parameterized by the orbits of the action of
GL(n) = {1} x GL(n) (not just GL(n)) because (t,g) and (1,t"'g) have the
same action. Basically the action of the &* component in GL(n) is insignif-
icant in the sense that (Mt¢~!, My, .-+, M,) and (M, My,--- , M,) belong to
the same orbit — we can go from the former to the latter by the action of
(t71,1d). Alternately, such a representation is described by a k—algebra ho-
momorphism f : k(Xy, -+, X,) = Mat,x,(k), X; — M;, together with an
element M € k™.

We will call an element (M, M, ---,M,) cyclic if M generates k™ as a
k(Xi,---,X,) —module. Collect all such cyclic elements to form the set
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Rep(H,,n)¥°. It is clear that Rep(H,,n)?® is GL(n)—stable. Further if
M = (M,M,---,M,) is a cyclic tuple, then GL(n)ps is trivial. This is
seen as follows: If (M) is cyclic, then there are constants /\Ej ) € k such
that S, AV MM = e; € k". If g € GL(n)y then ge; = 3, AP gMM =
> Agj)MigM = )\Z(»j)MiM = e;. Since this is true for every coordinate
vector, we must have g = Id.

Let’s talk about the orbit space Rep(H,,n)%°/ GL(n). Here we will view the
points of representation space as an algebra homomorphism k (X;,--- , X,) —
Mat, . (k) together with an element of k™. This means Rep(H,,n)¥¢ =
{(f,v) € Hom (k (X1, -+, X;) , Mat, s, (k)) x k" : f (k(X;))v = k"}. Note that
Two points (M, ), (N,v) € Rep(H,,n)¥¢ are in the same orbit iff M = gN
and pu(X;) = gv(X;)g~! for some g € GL(n). Just to repeat, u,v are alge-
bra homomorphisms of the above type. Given any (f,v) € Rep(H,,n)¥°,
we can put a ring structure on k" given as follows: for ui,us € k™ there
are polynomials Py, P, € k(X1,---, X,) such that f(P;)v = u;, and so define
urug = f(P1P2)v]] The kernelis I(f,v) = {P € k(X1 -+, X,) : f(P)v=0}.
One should check that the following is a bijective correspondence between
Rep(H,,n)¥¢/ GL(n) and {left ideals C k[Xy, -, X,,] of codimension n}:

(fs0) = I(f,0)
(P = (m(Q) = m(PQ)),m(1)) = I

PQ-P'Q=PQ—-PQ +PQ - PQ="PQ - PQ

Definition 2. An (affine) algebraic group is an (affine) algebraic variety G
equipped with a group structure such that the multiplication map GxG — G
and the inverse map G — G are morphisms of varieties.

An algebraic action of an algebraic group G on a variety X is a group action
G x X — X which is also a morphism of varieties.

Proposition 1.3. Let G have an algebraic action on a variety X. Fixx € X.
(a) Go ={g€G:g-x=ua} is closed in G.

(b) G- x is a locally closed, non-singular subvariety of X. All connected
components of G - x have dimension dimG — dim G,.

T couldn’t verify that this is well defined because of the non-commutativity of the X;’s.



(¢c) The orbit closure G -z is the union of G - x and of orbits of smaller
dimension; it contains at least one closed orbit.

(d) The variety G is connected if and only if it is irreducible; then the orbit
G - x and its closure are irreducible as well.

Now consider a group homomorphism ¢ : G — H of algebraic groups. This
gives an action of G on H given by g - h = ¢(g)h. This is an algebraic
action and its orbits are G - h = (Imy) - h. There is at least one closed
orbit (contained in (Im ) - h for some h € H). But the orbits are permuted
transitively by the action of H on tiself by right multiplication, thus implying
that all orbits (that is, cosets) are closed. This means Im ¢ is closed. Now
note that G1,, = {9 € G:p(g9) =1} = kerp, which is also closed. Thus
ker ¢, Im ¢ are closed in G, H respectively. Finally we get that dimIm ¢ =
dim(G - 1) = dim G — dim Gy,, = dim G — dim ker ¢.

2 Isotropy groups

Proposition 2.1. Let M be a finite-dimensional representation of Q).

(a) The automorphism group Autg (M) is an open affine subset of Endg(M).
As a consequence, Autg(M) is a connected linear algebraic group.

(b) There exists a decomposition Autg(M) = U x HGL(mi) where U
i=1

15 a s a closed normal unipotent subgroup and my,--- ,m, denote the
multiplicities of the indecomposable summands of M .

We will allude to a theorem for finite-dimensional representations of associa-
tive algebras, and leave it as an exercise to the reader to prove proposition[2.1]

Theorem 2.2. Let M be a finite-dimensional module over an algebra A.
Then there is a decomposition of A-modules

M = EB M
i=1

where My, --- , M, are indecomposable and pairwise non-isomorphic, and
mi,--- ,m, are positive integers. Moreover, the indecomposable summands



M; and their multiplicities m; are uniquely determined up to reordering. We
also have a decomposition of vector spaces

Ends (M) = I & [ ] Maty, xm, (k)

1=1

where I is a nilpotent ideal.

Proof sketch of proposition[2.1. The first part is immediate by the observa-
tion that Autg(M) = Endg(M) \ V(det) = D(det).

For the next part, we start with the split surjective algebra-homomorphism

Endg(M) — Endg(M)/I = HMatmixmi(k) which, in turn, gives a split
i=1

surjective algebra-homomorphism Autg(M) — HGL(mi). The kernel of
=1

this map is Idy; +1. Thus, Idy, +1 is a closed corfnected normal subgroup of
AUtQ (M ) .

Next consider the linear action of Idy; +1 on k1Id,, &1 by left multiplication.
Since the orbit of Id,, is isomorphic to the affine space Id,; +1, this action
yields a closed embedding Idy +1 — GL(kIdy @I). The powers I™ form
a decreasing filtration of the vector space k1dy; &I, and they stabilize to
0. Any [" is stable under the action of I + Id;; and this action fixes the
associated grades I"/I™™! and the quotient (kIdy @7)/I. This establishes
Idy, +1 as a unipotent subgroup of GL(kIdy @©I), by choosing a basis of
k1dy @1 compatible with the filtration (I™),>1. [

Corollary 2.3. The representation V., for x € Rep(Q,n) is is indecompos-
able if and only if the isotropy group GL(n), is the semi-direct product of a
unipotent subgroup with the group k* 1d,; equivalently, PGL(n), is unipotent.

Now, when studying homological aspects, one comes across the following
exact sequence

0 — Endo(M) — J] End(Vi) = [] Hom(Vi(a), Vi) — Exty(M, M) — 0.
1€Qo acQ1

The above discussion helps put this exact sequence in a nice geometric frame-
work.



Theorem 2.4. Let x € Rep(Q,n) and denote by M =V, the corresponding
representation of Q.

(a) There is an exact sequence
0 — Endg(M) — End(n) == Rep(Q,n) — Extg,(M, M) — 0

with C:Jc((fi)ier) = (ft(a)xa - xafs(a))a-
(b) ¢, may be identified with the differential at the identity of the orbit map

(¢c) The image of c, is the Zariski tangent space T, (GL(n) - z) viewed as a
subspace of T, (Rep(Q,n)) = Rep(Q,n).

Proof.(b) GL(n) C End(n). So the Zariski tangent spacd’| to this group at
open

Id,, may be identified with the vector space End(n). The tangent space
to Autg(M) at Id, is Endg(M). The action of GL(n) is given by

GL(n;) x GL(n;) — Maty,xn, (k)
(g, h) — haij97"
¢, immediately comes from the differential of this map
Maty, xn;, X Maty, xn;, — Maty, xn, (k)

(fi, [3) — fimin; — s fi

(¢) From proposition [1.3[ we get dim(GL(n) - z) = dim GL(n) — dim GL(n),.
But dim(GL(n) - ) = dim [T,,(GL(n) - x)]. But GL(n), comprise of the
invertible intertwiners for the module M = V,, and thus dim GL(n), =
dim Autg(M) = dimEndg(M). Also dimGL(n) = dimEnd(n). The
last two equalities follow from the fact that GL C End which is propo-

open
sition 2.1 Combining these gives dim [T,(GL(n) - z)] = dimEnd(n) —
dim Endg(M). By (b) and the above exact sequence, ker ¢, = Endg(M).
This means that T,,(GL(n) - z) is the entire image of ¢,.

2This is a technical term which can be defined without using differential geometry
concepts and simply by linearizing things using ‘abstract’ algebra.
A similar definition in this spirit is the tangent space for a local ring (R, m) which is
m/m?— this essentially keeps only linear terms.
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