Quiver representations: a geometric view*

Nilava Metya

April 5, 2023

1 Representation spaces

Fix a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ and a dimension vector $\boldsymbol{n}=\left(n_{i}\right)_{i \in Q_{0}}$.
Definition 1 (Representation space). The representation space of the quiver Q for the dimension vector \boldsymbol{n} is

$$
\operatorname{Rep}(Q, \boldsymbol{n}):=\bigoplus_{\{i \rightarrow j\} \in Q_{1}} \operatorname{Mat}_{n_{i} \times n_{j}}(k) .
$$

This is called the representation space because every point $x \in \operatorname{Rep}(Q, \boldsymbol{n})$ corresponds to a representation V_{x} of Q with dimension vector n. Clearly $\operatorname{dim} \operatorname{Rep}(Q, \boldsymbol{n})=\sum_{\{i \rightarrow j\} \in Q_{1}} n_{i} n_{j}$. An object $\boldsymbol{x} \in \operatorname{Rep}(Q, \boldsymbol{n})$ with be denoted by $\left(x_{\alpha}\right)_{(i \xrightarrow{\alpha} j) \in Q_{1}}$ where $x_{\alpha} \in \operatorname{Hom}\left(k^{n_{s(\alpha)}}, k^{n_{t(\alpha)}}\right)$. The group

$$
\mathrm{GL}(\boldsymbol{n}):=\prod_{i \in Q_{0}} \mathrm{GL}\left(n_{i}\right)
$$

acts on each $\operatorname{Mat}_{n_{i} \times n_{j}}(k)$ by $\left(g_{i}\right)_{i \in Q_{0}} \cdot x_{\alpha}=g_{j} x_{\alpha} g_{i}^{-1}$, and thus extends to an action on $\operatorname{Rep}(Q, \boldsymbol{n})$. It is not hard to see that $k^{*} \cong k^{*}\left(\mathbf{1}_{n_{i}}\right)_{i \in Q_{0}}$ is a normal subgroup of $\operatorname{GL}(\boldsymbol{n})$ and acts trivially on $\operatorname{Rep}(Q, \boldsymbol{n})$. This gives an action of $\operatorname{PGL}(\boldsymbol{n})=\mathrm{GL}(\boldsymbol{n}) / k^{*}$ on $\operatorname{Rep}(Q, \boldsymbol{n})$. We note that the representations V_{x}, V_{y} for two points $x, y \in \operatorname{Rep}(Q, \boldsymbol{n})$ are isomorphic iff x, y are in the same orbit

[^0]of $\operatorname{GL}(\boldsymbol{n})$ (equivalently, $\operatorname{PGL}(\boldsymbol{n})$). This is made more formal and informative in the following lemma:

Lemma 1.1. The assignment $x \mapsto V_{x}$ gives a one-one correspondence between the orbits $\operatorname{GL}(\boldsymbol{n})$ acting on $\operatorname{Rep}(Q, \boldsymbol{n})$ and the set of isomorphism classes of representations of Q with dimension vector n. The stabilizer or the isotropy group $\mathrm{GL}(\boldsymbol{n})_{x}=\{g \in \mathrm{GL}(\boldsymbol{n}): g \cdot x=x\}$ is isomorphic to the automorphism group $\operatorname{Aut}_{Q}\left(V_{x}\right)$.

Example 1.2. Consider the following quiver

where $1, n$ denote the dimensions at the respective vertices, so our dimension vector is $\boldsymbol{n}=(1, n)$. Call it H_{r}. Then a typical point in $\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)$ looks like $\left(M, M_{1}, \cdots, M_{r}\right)$ where $X \in \operatorname{Mat}_{n \times 1}(k)=k^{n}, M_{i} \in \operatorname{Mat}_{n \times n}(k)$. Here $\mathrm{GL}(\boldsymbol{n})=\mathrm{GL}(1) \times \mathrm{GL}(n)=k^{*} \times \mathrm{GL}(n)$ whose action on $\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)$ is given by $(c, g) \cdot\left(M, M_{1}, \cdots, M_{r}\right)=\left(g M t^{-1}, g M_{1} g^{-1}, \cdots, g M_{r} g^{-1}\right)$. Such a point corresponds to a representation

The isomorphism classes of representations of the above quiver with the aforementioned dimension vector is parameterized by the orbits of the action of $\mathrm{GL}(n)=\{1\} \times \mathrm{GL}(n)$ (not just $\mathrm{GL}(\boldsymbol{n}))$ because (t, g) and $\left(1, t^{-1} g\right)$ have the same action. Basically the action of the k^{*} component in $\mathrm{GL}(\boldsymbol{n})$ is insignificant in the sense that $\left(M t^{-1}, M_{1}, \cdots, M_{n}\right)$ and $\left(M, M_{1}, \cdots, M_{n}\right)$ belong to the same orbit - we can go from the former to the latter by the action of $\left(t^{-1}\right.$, Id $)$. Alternately, such a representation is described by a k-algebra homomorphism $f: k\left\langle X_{1}, \cdots, X_{n}\right\rangle \rightarrow \operatorname{Mat}_{n \times n}(k), X_{i} \mapsto M_{i}$, together with an element $M \in k^{n}$.

We will call an element $\left(M, M_{1}, \cdots, M_{r}\right)$ cyclic if M generates k^{n} as a $k\left\langle X_{1}, \cdots, X_{r}\right\rangle$-module. Collect all such cyclic elements to form the set
$\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }}$. It is clear that $\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }}$ is $\operatorname{GL}(n)$-stable. Further if $M=\left(M, M_{1}, \cdots, M_{r}\right)$ is a cyclic tuple, then $\mathrm{GL}(n)_{M}$ is trivial. This is seen as follows: If (\boldsymbol{M}) is cyclic, then there are constants $\lambda_{i}^{(j)} \in k$ such that $\sum_{i} \lambda_{i}^{(j)} M_{i} M=\boldsymbol{e}_{j} \in k^{n}$. If $g \in \operatorname{GL}(n)_{M}$ then $g \boldsymbol{e}_{j}=\sum_{i} \lambda_{i}^{(j)} g M_{i} M=$ $\sum_{i} \lambda_{i}^{(j)} M_{i} g M=\sum_{i} \lambda_{i}^{(j)} M_{i} M=\boldsymbol{e}_{j}$. Since this is true for every coordinate vector, we must have $g=$ Id.

Let's talk about the orbit space $\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }} / \operatorname{GL}(n)$. Here we will view the points of representation space as an algebra homomorphism $k\left\langle X_{1}, \cdots, X_{r}\right\rangle \rightarrow$ $\operatorname{Mat}_{n \times n}(k)$ together with an element of k^{n}. This means $\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }}=$ $\left\{(f, v) \in \operatorname{Hom}\left(k\left\langle X_{1}, \cdots, X_{r}\right\rangle, \operatorname{Mat}_{n \times n}(k)\right) \times k^{n}: f\left(k\left\langle X_{i}\right\rangle\right) v=k^{n}\right\}$. Note that Two points $(M, \mu),(N, \nu) \in \operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }}$ are in the same orbit iff $M=g N$ and $\mu\left(X_{i}\right)=g \nu\left(X_{i}\right) g^{-1}$ for some $g \in G L(n)$. Just to repeat, μ, ν are algebra homomorphisms of the above type. Given any $(f, v) \in \operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }}$, we can put a ring structure on k^{n} given as follows: for $u_{1}, u_{2} \in k^{n}$ there are polynomials $P_{1}, P_{2} \in k\left\langle X_{1}, \cdots, X_{r}\right\rangle$ such that $f\left(P_{i}\right) v=u_{i}$, and so define $u_{1} u_{2}=f\left(P_{1} P_{2}\right) v$ The kernel is $I(f, v)=\left\{P \in k\left\langle X_{1} \cdots, X_{n}\right\rangle: f(P) v=0\right\}$. One should check that the following is a bijective correspondence between $\operatorname{Rep}\left(H_{r}, \boldsymbol{n}\right)^{\text {cyc }} / \operatorname{GL}(n)$ and $\left\{\right.$ left ideals $\subseteq k\left[X_{1}, \cdots, X_{n}\right]$ of codimension $\left.n\right\}$:

$$
\begin{aligned}
(f, v) & \mapsto I(f, v) \\
(P \mapsto(\pi(Q) \mapsto \pi(P Q)), \pi(1)) & \leftrightarrow I
\end{aligned}
$$

$P Q-P^{\prime} Q=P Q-P Q^{\prime}+P Q^{\prime}-P^{\prime} Q=P Q^{\prime}-P^{\prime} Q$
Definition 2. An (affine) algebraic group is an (affine) algebraic variety G equipped with a group structure such that the multiplication map $G \times G \rightarrow G$ and the inverse map $G \rightarrow G$ are morphisms of varieties.
An algebraic action of an algebraic group G on a variety X is a group action $G \times X \rightarrow X$ which is also a morphism of varieties.

Proposition 1.3. Let G have an algebraic action on a variety X. Fix $x \in X$.
(a) $G_{x}=\{g \in G: g \cdot x=x\}$ is closed in G.
(b) $G \cdot x$ is a locally closed, non-singular subvariety of X. All connected components of $G \cdot x$ have dimension $\operatorname{dim} G-\operatorname{dim} G_{x}$.

[^1](c) The orbit closure $\overline{G \cdot x}$ is the union of $G \cdot x$ and of orbits of smaller dimension; it contains at least one closed orbit.
(d) The variety G is connected if and only if it is irreducible; then the orbit $G \cdot x$ and its closure are irreducible as well.

Now consider a group homomorphism $\varphi: G \rightarrow H$ of algebraic groups. This gives an action of G on H given by $g \cdot h:=\varphi(g) h$. This is an algebraic action and its orbits are $G \cdot h=(\operatorname{Im} \varphi) \cdot h$. There is at least one closed orbit (contained in $(\operatorname{Im} \varphi) \cdot h$ for some $h \in H$). But the orbits are permuted transitively by the action of H on tiself by right multiplication, thus implying that all orbits (that is, cosets) are closed. This means $\operatorname{Im} \varphi$ is closed. Now note that $G_{1_{H}}=\{g \in G: \varphi(g)=1\}=\operatorname{ker} \varphi$, which is also closed. Thus $\operatorname{ker} \varphi, \operatorname{Im} \varphi$ are closed in G, H respectively. Finally we get that $\operatorname{dim} \operatorname{Im} \varphi=$ $\operatorname{dim}\left(G \cdot 1_{H}\right)=\operatorname{dim} G-\operatorname{dim} G_{1_{H}}=\operatorname{dim} G-\operatorname{dim} \operatorname{ker} \varphi$.

2 Isotropy groups

Proposition 2.1. Let M be a finite-dimensional representation of Q.
(a) The automorphism group $\operatorname{Aut}_{Q}(M)$ is an open affine subset of $\operatorname{End}_{Q}(M)$. As a consequence, $\operatorname{Aut}_{Q}(M)$ is a connected linear algebraic group.
(b) There exists a decomposition $\operatorname{Aut}_{Q}(M) \cong U \rtimes \prod_{i=1}^{r} \mathrm{GL}\left(m_{i}\right)$ where U is a s a closed normal unipotent subgroup and m_{1}, \cdots, m_{r} denote the multiplicities of the indecomposable summands of M.

We will allude to a theorem for finite-dimensional representations of associative algebras, and leave it as an exercise to the reader to prove proposition 2.1.

Theorem 2.2. Let M be a finite-dimensional module over an algebra A. Then there is a decomposition of A-modules

$$
M \cong \bigoplus_{i=1}^{r} M_{i}^{m_{i}}
$$

where M_{1}, \cdots, M_{r} are indecomposable and pairwise non-isomorphic, and m_{1}, \cdots, m_{r} are positive integers. Moreover, the indecomposable summands
M_{i} and their multiplicities m_{i} are uniquely determined up to reordering. We also have a decomposition of vector spaces

$$
\operatorname{End}_{A}(M) \cong I \oplus \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)
$$

where I is a nilpotent ideal.
Proof sketch of proposition 2.1. The first part is immediate by the observation that $\operatorname{Aut}_{Q}(M)=\operatorname{End}_{Q}(M) \backslash V(\operatorname{det})=D($ det $)$.

For the next part, we start with the split surjective algebra-homomorphism $\operatorname{End}_{Q}(M) \rightarrow \operatorname{End}_{Q}(M) / I \cong \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)$ which, in turn, gives a split surjective algebra-homomorphism $\operatorname{Aut}_{Q}(M) \rightarrow \prod_{i=1}^{r} \mathrm{GL}\left(m_{i}\right)$. The kernel of this map is $\operatorname{Id}_{M}+I$. Thus, $\operatorname{Id}_{M}+I$ is a closed connected normal subgroup of $\operatorname{Aut}_{Q}(M)$.
Next consider the linear action of $\mathrm{Id}_{M}+I$ on $k \operatorname{Id}_{M} \oplus I$ by left multiplication. Since the orbit of Id_{M} is isomorphic to the affine space $\mathrm{Id}_{M}+I$, this action yields a closed embedding $\operatorname{Id}_{M}+I \hookrightarrow \mathrm{GL}\left(k \operatorname{Id}_{M} \oplus I\right)$. The powers I^{n} form a decreasing filtration of the vector space $k \operatorname{Id}_{M} \oplus I$, and they stabilize to 0 . Any I^{n} is stable under the action of $I+\mathrm{Id}_{M}$ and this action fixes the associated grades I^{n} / I^{n+1} and the quotient $\left(k \operatorname{Id}_{M} \oplus I\right) / I$. This establishes $\mathrm{Id}_{M}+I$ as a unipotent subgroup of $\mathrm{GL}\left(k \mathrm{Id}_{M} \oplus I\right)$, by choosing a basis of $k \operatorname{Id}_{M} \oplus I$ compatible with the filtration $\left(I^{n}\right)_{n \geq 1}$.

Corollary 2.3. The representation V_{x}, for $x \in \operatorname{Rep}(Q, \boldsymbol{n})$ is is indecomposable if and only if the isotropy group $\mathrm{GL}(\boldsymbol{n})_{x}$ is the semi-direct product of a unipotent subgroup with the group $k^{*} \mathrm{Id}_{\boldsymbol{n}}$; equivalently, $\mathrm{PGL}(\boldsymbol{n})_{x}$ is unipotent.

Now, when studying homological aspects, one comes across the following exact sequence
$0 \rightarrow \operatorname{End}_{Q}(M) \rightarrow \prod_{i \in Q_{0}} \operatorname{End}\left(V_{i}\right) \rightarrow \prod_{\alpha \in Q_{1}} \operatorname{Hom}\left(V_{s(\alpha)}, V_{t(\alpha)}\right) \rightarrow \operatorname{Ext}_{Q}^{1}(M, M) \rightarrow 0$.
The above discussion helps put this exact sequence in a nice geometric framework.

Theorem 2.4. Let $x \in \operatorname{Rep}(Q, \boldsymbol{n})$ and denote by $M=V_{x}$ the corresponding representation of Q.
(a) There is an exact sequence

$$
0 \longrightarrow \operatorname{End}_{Q}(M) \longrightarrow \operatorname{End}(\boldsymbol{n}) \xrightarrow{c_{x}} \operatorname{Rep}(Q, \boldsymbol{n}) \longrightarrow \operatorname{Ext}_{Q}^{1}(M, M) \longrightarrow 0
$$

with $c_{x}\left(\left(f_{i}\right)_{i \in Q_{0}}\right)=\left(f_{t(\alpha)} x_{\alpha}-x_{\alpha} f_{s(\alpha)}\right)_{\alpha}$.
(b) c_{x} may be identified with the differential at the identity of the orbit map $\varphi_{x}: \operatorname{GL}(\boldsymbol{n}) \rightarrow \operatorname{Rep}(Q, \boldsymbol{n}), g \mapsto g \cdot x$.
(c) The image of c_{x} is the Zariski tangent space $T_{x}(\mathrm{GL}(\boldsymbol{n}) \cdot x)$ viewed as a subspace of $T_{x}(\operatorname{Rep}(Q, \boldsymbol{n})) \cong \operatorname{Rep}(Q, \boldsymbol{n})$.

Proof.(b) GL $(\boldsymbol{n}) \underset{\text { open }}{\subset} \operatorname{End}(\boldsymbol{n})$. So the Zariski tangent space ${ }^{2}$ to this group at
$\operatorname{Id}_{\boldsymbol{n}}$ may be identified with the vector space $\operatorname{End}(\boldsymbol{n})$. The tangent space to $\operatorname{Aut}_{Q}(M)$ at $\operatorname{Id}_{\boldsymbol{n}}$ is $\operatorname{End}_{Q}(M)$. The action of $\operatorname{GL}(\boldsymbol{n})$ is given by

$$
\begin{aligned}
\mathrm{GL}\left(n_{i}\right) \times \mathrm{GL}\left(n_{j}\right) & \longrightarrow \operatorname{Mat}_{n_{i} \times n_{j}}(k) \\
(g, h) & \longmapsto h x_{i \rightarrow j} g^{-1}
\end{aligned}
$$

c_{x} immediately comes from the differential of this map

$$
\begin{aligned}
\operatorname{Mat}_{n_{i} \times n_{i}} \times \operatorname{Mat}_{n_{j} \times n_{j}} & \longrightarrow \operatorname{Mat}_{n_{i} \times n_{j}}(k) \\
\left(f_{i}, f_{j}\right) & \longmapsto f_{j} x_{i \rightarrow j}-x_{i \rightarrow j} f_{i} .
\end{aligned}
$$

(c) From proposition 1.3 we get $\operatorname{dim}(\mathrm{GL}(\boldsymbol{n}) \cdot x)=\operatorname{dimGL}(\boldsymbol{n})-\operatorname{dim} \mathrm{GL}(\boldsymbol{n})_{x}$. But $\operatorname{dim}(\operatorname{GL}(\boldsymbol{n}) \cdot x)=\operatorname{dim}\left[T_{x}(\mathrm{GL}(\boldsymbol{n}) \cdot x)\right]$. But $\mathrm{GL}(\boldsymbol{n})_{x}$ comprise of the invertible intertwiners for the module $M=V_{x}$, and thus $\operatorname{dim} \operatorname{GL}(\boldsymbol{n})_{x}=$ $\operatorname{dim} \operatorname{Aut}_{Q}(M)=\operatorname{dim} \operatorname{End}_{Q}(M)$. Also $\operatorname{dimGL}(\boldsymbol{n})=\operatorname{dim} \operatorname{End}(\boldsymbol{n})$. The last two equalities follow from the fact that GL $\underset{\text { open }}{\subset}$ End which is proposition 2.1. Combining these gives $\operatorname{dim}\left[T_{x}(\mathrm{GL}(\boldsymbol{n}) \cdot x)\right]=\operatorname{dim} \operatorname{End}(\boldsymbol{n})-$ $\operatorname{dim} \operatorname{End}_{Q}(M)$. By (b) and the above exact sequence, $\operatorname{ker} c_{x}=\operatorname{End}_{Q}(M)$. This means that $T_{x}(\operatorname{GL}(\boldsymbol{n}) \cdot x)$ is the entire image of c_{x}.

[^2]
References

[1] M. Brion, "Representations of quivers," 2008. [Online]. Available: https://www-fourier.ujf-grenoble.fr / ~mbrion/notes_quivers_rev.pdf

[^0]: *Most material in the notes is basically copied from the mentioned reference article

[^1]: ${ }^{1}$ I couldn't verify that this is well defined because of the non-commutativity of the X_{i} 's.

[^2]: ${ }^{2}$ This is a technical term which can be defined without using differential geometry concepts and simply by linearizing things using 'abstract' algebra.
 A similar definition in this spirit is the tangent space for a local ring (R, \mathfrak{m}) which is $\mathfrak{m} / \mathfrak{m}^{2}-$ this essentially keeps only linear terms.

