"Root and community inference on the latent growth process of a network"

Authors: Harry Crane, Min Xu

Nilava Metya
nilavam.github.io
nilava.metya@rutgers.edu

Department of Mathematics
Rutgers University

The real world problems

The real world problems

- An infection starting from a source, and has spread out.

The real world problems

- An infection starting from a source, and has spread out.
- An incorrect rumor has been generated by a person and has spread through social networks.

The real world problems

- An infection starting from a source, and has spread out.
- An incorrect rumor has been generated by a person and has spread through social networks.

We will only observe the structure of spreading after the spreading has been done.

The real world problems

- An infection starting from a source, and has spread out.
- An incorrect rumor has been generated by a person and has spread through social networks.

We will only observe the structure of spreading after the spreading has been done. Want to find the source.

Notation

Nocalion

- All graphs are undirected. Standard: $\boldsymbol{g}=(V, E), V=V(\boldsymbol{g}), E=E(\boldsymbol{g})$.

Notation

- All graphs are undirected. Standard: $\boldsymbol{g}=(V, E), V=V(g), E=E(g)$.
- Capital Letters \Leftrightarrow Random objects Lowercase letters \rightarrow Fixed objects
$\operatorname{APA}(\alpha, \beta)$

$\operatorname{APA}(\alpha, \beta)$

- The affine preferential attachment tree model with parameters α, β generates an increasing sequence $T_{1} \subset T_{2} \subset \cdots \subset T_{n}$ of random trees where T_{i} is a labelled tree with i nodes and nodes are labelled by their arrival time so that $V\left(T_{i}\right)=[i]$.

$\operatorname{APA}(\alpha, \beta)$

- The affine preferential attachment tree model with parameters α, β generates an increasing sequence $T_{1} \subset T_{2} \subset \cdots \subset T_{n}$ of random trees where T_{i} is a labelled tree with i nodes and nodes are labelled by their arrival time so that $V\left(T_{i}\right)=[i]$.
- The generation looks something like this:

$\operatorname{APA}(\alpha, \beta)$

- The affine preferential attachment tree model with paramekers α, β generates an increasing sequence $T_{1} \subset T_{2} \subset \cdots \subset T_{n}$ of random Erees where T_{i} is a labelled Eree with i nodes and nodes are labelled by their arrival kime so that $V\left(T_{i}\right)=[i]$.
- The generation looks something like this:

$$
\rightarrow T_{1}=([1],\{ \})
$$

$\operatorname{APA}(\alpha, \beta)$

- The affine preferential attachment tree model with parameters α, β generates an increasing sequence $T_{1} \subset T_{2} \subset \cdots \subset T_{n}$ of random trees where T_{i} is a labelled tree with i nodes and nodes are labelled by their arrival time so that $V\left(\boldsymbol{T}_{i}\right)=[i]$.
- The generation looks something like this:
$\rightarrow T_{1}=([1],\{ \})$
$>$ Given T_{t-1}, add a node labelled t and a random edge $\left(t, w_{t}\right)$ to get T_{t} where w_{t} is chosen with probability $\frac{\beta \cdot D_{T_{t-1}}\left(w_{t}\right)+\alpha}{2 \beta(t-2)+\alpha(t-1)}$.

Examples for $\operatorname{APA}(\alpha, \beta)$

Examples for $\operatorname{APA}(\alpha, \beta)$

- IPA $(1,0)$ gives the probability $\frac{1}{t-1}$. So a neighbor is chosen uniformly from $V\left(T_{t-1}\right)$.
- $\operatorname{APA}(0,1)$ gives the probability $\frac{D_{T_{t-1}}\left(w_{t}\right)}{2(t-2)}$. So a neighbor is chosen with probability proportional to its degree.

$\operatorname{PAPER}(\alpha, \beta, \theta)$

PAPER $=$ Preferential Attachment Plus Erdös-Rényi

$\operatorname{PAPER}(\alpha, \beta, \theta)$

PAPER = Preferential Attachment Plus Erdös-Rényi

We say that a random graph G_{n} is distributed accordion to $\operatorname{PAPER}(\alpha, \beta, \theta)$ if $\boldsymbol{G}_{n}=T_{n}+\boldsymbol{R}_{n}$ if $T_{n} \sim \operatorname{APA}(\alpha, \beta)$ and $\boldsymbol{R}_{n} \sim$ Erdös $-\operatorname{Rényi}(\theta)$.

$\operatorname{PAPER}(\alpha, \beta, \theta)$

PAPER = Preferential Attachment Plus Erdös-Rényi

We say that a random graph G_{n} is distributed accordion to $\operatorname{PAPER}(\alpha, \beta, \theta)$ if $\boldsymbol{G}_{n}=\boldsymbol{T}_{n}+\boldsymbol{R}_{n}$ if $T_{n} \sim \operatorname{APA}(\alpha, \beta)$ and $\boldsymbol{R}_{n} \sim$ Erdös $-\operatorname{Rényi}(\theta)$.

Actual network

Actual network

Actual network

Actual network

Actual network

Actual network

Observed network

Observed network

Observed network

Observed network

To kackle the problem, label ourselves

- The problem:

Given such an observed network, tell me about the root.

- The problem:

Given such an observed network, tell me about the root.

- Somewhat flexible:

Give me a set of vertices that contains the root with some confidence.

- The problem:

Given such an observed network, tell me about the root.

- Somewhat flexible:

Give me a set of vertices that contains the root with some confidence.

- More concrebely:

Give me a set of vertices $C\left(G^{*}\right) \subseteq V\left(G^{*}\right)$ such that $\mathbb{P}\left(\diamond \in C\left(G^{*}\right)\right) \geq 95 \%$.

- So our goal now:

Given $\epsilon \in(0,1)$, find $C_{\epsilon} \subseteq V=\{A, B, \cdots\}$ such that $\mathbb{P}\left(\diamond \in C_{\epsilon}\left(G^{*}\right)\right) \geq 1-\epsilon$.

- So our goal now:

Given $\epsilon \in(0,1)$, find $C_{\epsilon} \subseteq V=\{A, B, \cdots\}$ such that $\mathbb{P}\left(\diamond \in C_{\epsilon}\left(\boldsymbol{G}^{*}\right)\right) \geq 1-\epsilon$.

- Trivial:

Take $C_{e}\left(\boldsymbol{G}^{*}\right)=V\left(\boldsymbol{G}^{*}\right)$. Works for all ϵ.

- So our goal now:

Given $\epsilon \in(0,1)$, find $C_{\epsilon} \subseteq V=\{A, B, \cdots\}$ such that $\mathbb{P}\left(\diamond \in C_{\epsilon}\left(\boldsymbol{G}^{*}\right)\right) \geq 1-\epsilon$.

- Trivial:

Take $C_{c}\left(\boldsymbol{G}^{*}\right)=V\left(\boldsymbol{G}^{*}\right)$. Works for all c.

- Really, the problem asks for: smallest possible C_{c}.

One issue with $C_{\epsilon}\left(\boldsymbol{G}^{*}\right)$:

One issue with $C_{\epsilon}\left(G^{*}\right)$:

One issue with $C_{\epsilon}\left(G^{*}\right)$:

C_{e} either contains all or contains none of them.
$C_{\epsilon}\left(G^{*}\right)$ should be labelling equivariant

$C_{\epsilon}\left(G^{*}\right)$ should be labelling equivariant

which means that $\tau C_{\epsilon}\left(G^{*}\right)=C_{\epsilon}\left(\tau G^{*}\right)$ for all relabelings τ of G.

$C_{\epsilon}\left(G^{*}\right)$ should be labelling equivariant

which means that $\tau C_{\epsilon}\left(G^{*}\right)=C_{\epsilon}\left(\tau G^{*}\right)$ for all relabetings τ of G.

Use randomization to break ties.
In that case, $\tau C_{\epsilon}\left(\boldsymbol{G}^{*}\right)=C_{d}\left(\tau \boldsymbol{G}^{*}\right)$ for every relabelling τ of G^{*}.

The construction for $C_{\epsilon}(\cdot)$

The construction for $C_{e}(\cdot)$

- Say we have a labelled observed graph $\tilde{\boldsymbol{G}}=g$ with randomized labels from \boldsymbol{G}^{*}.

The construction for $C_{e}(\cdot)$

- Say we have a labelled observed graph $\tilde{G}=g$ with randomized labels from G^{*}.
- Say u_{i} is the node which is $i^{\text {th }}$ most likely to be the root. That is, $\mathbb{P}\left(\diamond=u_{1} \tilde{G}=g\right) \geq \mathbb{P}\left(\diamond=u_{2} \tilde{G}=g\right) \geq \cdots$

The construction for $C_{\epsilon}(\cdot)$

- Say we have a labelled observed graph $\tilde{G}=g$ with randomized labels from G^{*}.
- Say u_{i} is the node which is $i^{\text {th }}$ most likely to be the root. That is, $\mathbb{P}\left(\diamond=u_{1} \tilde{G}=g\right) \geq \mathbb{P}\left(\diamond=u_{2} \tilde{G}=g\right) \geq \cdots$
- Take smallest k such that $\sum_{i=1}^{k} \mathbb{P}\left(\diamond=u_{i} \tilde{G}=g\right) \geq 1-\epsilon$. This is our Bayesian coverage sel: $B_{\epsilon}(g)=\left\{u_{1}, \cdots, u_{k}\right\}$.

The construction for $C_{e}(\cdot)$

- Say we have a labelled observed graph $\tilde{G}=g$ with randomized labels from G^{*}.
- Say u_{i} is the node which is $i^{\text {th }}$ most likely to be the rook. That is, $\mathbb{P}\left(>=u_{1} \tilde{G}=g\right) \geq \mathbb{P}\left(\diamond=u_{2} \tilde{G}=g\right) \geq \cdots$
- Take smallest k such that $\sum_{i=1}^{k} \mathbb{P}\left(\diamond=u_{i} \tilde{G}=g\right) \geq 1-\epsilon$. This is our Bayesian coverage set: $B_{\epsilon}(g)=\left\{u_{1}, \cdots, u_{k}\right\}$.
- This is, in fact, an honest coverage set: if G^{*} is an alphabetically labelled observation of G (whose root is $>)$, then $\mathbb{P}\left(\nu \in B_{\epsilon}\left(G^{*}\right)\right) \geq 1-\epsilon$.

The construction for $C_{e}(\cdot)$

- Say we have a labelled observed graph $\tilde{G}=g$ with randomized labels from G^{*}.
- Say u_{i} is the node which is $i^{\text {th }}$ most likely to be the root. That is, $\mathbb{P}\left(\diamond=u_{1} \tilde{G}=g\right) \geq \mathbb{P}\left(\diamond=u_{2} \tilde{G}=g\right) \geq \cdots$
- Take smallest k such that $\sum_{i=1}^{k} \mathbb{P}\left(\diamond=u_{i} \tilde{G}=g\right) \geq 1-\epsilon$. This is our Bayesian coverage set: $B_{\epsilon}(g)=\left\{u_{1}, \cdots, u_{k}\right\}$.
- This is, in fact, an honest coverage set: if G^{*} is an alphabetically labelled observation of G (whose root is $>)$, then $\mathbb{P}\left(>\in B_{\epsilon}\left(G^{*}\right)\right) \geq 1-\epsilon$.

Computing $\mathbb{P}(.=u \quad \tilde{G}=g)$

Computing $\mathbb{P}(=u \quad \tilde{G}=g)$

- Let Π be a randomized labelling such that $\Pi G^{*}=\tilde{G}$.

Computing $\mathbb{P}(.=u \quad \tilde{G}=g)$

- Let Π be a randomized labelling such that $\Pi G^{*}=\tilde{G}$.
- Key observation 1:

$$
\mathbb{P}(\diamond=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\mathbb{P}(\Pi(1)=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\sum_{\pi} \mathbf{1}_{\{\pi(1)=u\}} \mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=\boldsymbol{g}) .
$$

Computing $\mathbb{P}(.=u \quad \tilde{G}=g)$

- Let Π be a randomized labelling such that $\Pi G^{*}=\tilde{G}$.
- Key observation 1:

$$
\mathbb{P}(\diamond=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\mathbb{P}(\Pi(1)=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\sum_{\pi} \mathbf{1}_{\{\pi(1)=u\}} \mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=\boldsymbol{g}) .
$$

Key observation 2: $\mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=g)=\frac{\mathbb{P}(\tilde{\boldsymbol{G}}=g \Pi=\pi)}{\sum_{\pi^{\prime}} \mathbb{P}\left(\tilde{\boldsymbol{G}}=g \Pi=\pi^{\prime}\right)}$.

Computing $\mathbb{P}(=u \quad \tilde{G}=g)$

- Let Π be a randomized labelling such that $\Pi G^{*}=\tilde{G}$.
- Key observation 1:
$\mathbb{P}(\diamond=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\mathbb{P}(\Pi(1)=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\sum_{\pi} \mathbf{1}_{\{\pi(1)=u\}} \mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=\boldsymbol{g})$.
Key observation 2: $\mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=\boldsymbol{g})=\frac{\mathbb{P}(\tilde{\boldsymbol{G}}=\boldsymbol{g} \Pi=\pi)}{\sum_{\pi^{\prime}} \mathbb{P}\left(\tilde{\boldsymbol{G}}=g \Pi=\pi^{\prime}\right)}$.
- Useful (because of the noise): $\mathbb{P}(\Pi=\pi, \tilde{T}=t \tilde{G}=g)$.

Computing $\mathbb{P}(.=u \tilde{G}=g)$

- Let Π be a randomized labelling such that $\Pi G^{*}=\tilde{G}$.
- Key observation 1:
$\mathbb{P}(\diamond=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\mathbb{P}(\Pi(1)=u \tilde{\boldsymbol{G}}=\boldsymbol{g})=\sum_{\pi} 1_{\{\pi(1)=u\}} \mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=\boldsymbol{g})$.
Key observation 2: $\mathbb{P}(\Pi=\pi \tilde{\boldsymbol{G}}=\boldsymbol{g})=\frac{\mathbb{P}(\tilde{\boldsymbol{G}}=\boldsymbol{g} \Pi=\pi)}{\sum_{\pi^{\prime}} \mathbb{P}\left(\tilde{\boldsymbol{G}}=g \Pi=\pi^{\prime}\right)}$.
- Useful (because of the noise): $\mathbb{P}(\Pi=\pi, \tilde{T}=t \tilde{G}=g)$.

A primer on Cibbs sampling

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?

A primer on Gibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?
Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.

A primer on Gibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?
Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?

```
                                    X:I
```

Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.
$\left\{Z_{n}\right\}$ is an irreducible aperiodic Markov chain with stationary distribution q.

A primer on Gibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?
Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.
$\left\{Z_{n}\right\}$ is an irreducible aperiodic Markov chain with stationary distribution q.
$\xrightarrow{\text { LLN }}$ if h is a bounded function then $\sum_{i, j} h(i, j) p(i, j)$ can be approximated by $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, Y_{i}\right)$.

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?

```
                                    X:I
```

Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.
$\left\{Z_{n}\right\}$ is an irreducible aperiodic Markov chain with stationary distribution q.
$\xrightarrow{\text { LLN }}$ if h is a bounded function then $\sum_{i, j} h(i, j) p(i, j)$ can be approximated by $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, Y_{i}\right)$.

A primer on Cibbs sampling

$$
\text { start with } X=x_{0}
$$

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know.

The math?

Sample $Y=y_{0}$ from $p\left(y x_{0}\right)$

Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.
$\left\{Z_{n}\right\}$ is an irreducible aperiodic Markov chain with stationary distribution q.
$\xrightarrow{\text { LLN }}$ if h is a bounded function then $\sum_{i, j} h(i, j) p(i, j)$ can be approximated by $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, Y_{i}\right)$.

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know. The math?

```
X:T
```

Start with $X=x_{0}$

Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.

$$
\begin{aligned}
& \text { Sample } X=x_{1} \\
& \text { from } p\left(\begin{array}{ll}
x & y_{0}
\end{array}\right)
\end{aligned}
$$

$\left\{Z_{n}\right\}$ is an irreducible aperiodic Markov chain with stationary distribution q.
$\xrightarrow{\text { LLN }}$ if h is a bounded function then $\sum_{i, j} h(i, j) p(i, j)$ can be approximated by $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, Y_{i}\right)$.

A primer on Cibbs sampling

When? Compute $p(X, Y)$ when $p(X Y)$ and $p(Y X)$ are known/easy to know. The math?

Let q be the distribution of $Z=(X, Y)$. Generate a Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ with transition
$\tilde{q}_{(i j),(k l)}=\mathbb{P}[(Y=j) \rightarrow(X=k) \rightarrow(Y=l)]=p(X=k \quad Y=j) \cdot p(Y=l \quad X=k)=\frac{q_{k j}}{\sum_{t} q_{t j}} \cdot \frac{q_{k l}}{\sum_{t} q_{k t}}$.
$\left\{Z_{n}\right\}$ is an irreducible aperiodic Markov chain with stationary distribution q.
$\xrightarrow{\text { LLN }}$ if h is a bounded function then $\sum_{i, j} h(i, j) p(i, j)$ can be approximated by $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, Y_{i}\right)$.

The Gibbs sampler algorithm for our case

The Cibbs sampler algorithm for our case

- Remember that $X=\tilde{T}, Y=\Pi$.

The Cibbs sampler algorithm for our case

- Remember that $X=\tilde{T}, Y=\Pi$.
- So we alternate between kwo stages:

The cibbs sampler algorithm for our case

- Remember that $X=\tilde{T}, Y=\Pi$.
- So we alternate between kwo stages:
- Fix t and generate π from distribution $\mathbb{P}(\Pi=\pi \tilde{T}=t, \tilde{G}=g)$.

The cibbs sampler algorithm for our case

- Remember that $X=\tilde{T}, Y=\Pi$.
- So we alternate between kwo stages:
- Fix t and generate π from distribution $\mathbb{P}(\Pi=\pi \tilde{T}=t, \tilde{G}=g)$.
- Fix π and generate t from the distribution $\mathbb{P}(\tilde{T}=t \Pi=\pi, \tilde{G}=g)$.

An example

 root probabilities. We label the 12 nodes with the highest root probabilities.

Bibliography

[CX23] Harry Crane and Min Xu. Root and community inference on the latent growth process of a network, 2023, arXiv: 2107.00163 [stat.ME].
[CX21] Harry Crane and Min Xu. Inference on the history of a randomly growing tree. Journal of the Royal society of Statistics Series B, Volume 83, Issue 4, September 2021, Pages 639-668, hetps://doi.org/10.1111/rssb.12428.

