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The real world problems

An infection starting from a source, and has spread out.

An incorrect rumor has been generated by a person and has spread 
through social networks.

We will only observe the structure of spreading after the spreading has been done.
Want to find the source.
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Capital letters <-> Random objects 
Lowercase letters <-> Fixed objects
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APA(α, β)
The affine preferential attachment tree model with 
parameters ,  generates an increasing sequence 

 of random trees where  is a labelled tree 
with  nodes and nodes are labelled by their arrival time so 
that .

α β
T1 ⊂ T2 ⊂ ⋯ ⊂ Tn Ti

i
V(Ti) = [i]

The generation looks something like this:

T1 = ([1], {})

Given , add a node labelled  and a random edge  to get  where  is 

chosen with probability .

Tt−1 t (t, wt) Tt wt
β ⋅ DTt−1

(wt) + α

2β(t − 2) + α(t − 1)



Examples for  APA(α, β)



Examples for  APA(α, β)

 gives the probability . So a neighbor is 

chosen uniformly from . 

 gives the probability . So a neighbor 

is chosen with probability proportional to its degree.

APA(1,0)
1

t − 1
V(Tt−1)

APA(0,1)
DTt−1

(wt)
2(t − 2)
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PAPER = Preferential Attachment Plus Erdös–Rényi

PAPER(α, β, θ)

We say that a random graph  is distributed accordion to  if 
 if  and .

Gn PAPER(α, β, θ)
Gn = Tn + Rn Tn ∼ APA(α, β) Rn ∼ Erd··os − Rényi(θ)

Will drop subscript
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To tackle the problem, label ourselves
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More concretely: 
Give me a set of vertices  such that .C(G*) ⊆ V(G*) ℙ( ∈ C(G*)) ≥ 95 %
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So our goal now:  
Given , find  such that .ϵ ∈ (0,1) Cϵ ⊆ V = {A, B, ⋯} ℙ( ∈ Cϵ(G*)) ≥ 1 − ϵ

Trivial: 
Take . Works for all .Cϵ(G*) = V(G*) ϵ

Really, the problem asks for: 
Smallest possible .Cϵ



One issue with :Cϵ(G*)



One issue with :Cϵ(G*)



One issue with :Cϵ(G*)

 either contains all  or contains none of them.Cϵ
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 should be labelling equivariantCϵ(G*)

which means that  for all relabelings .τCϵ(G*) = Cϵ(τG*) τ of G

Use randomization to break ties.  
In that case,  for every relabelling  of .τCϵ(G*) =

d
Cϵ(τG*) τ G*
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Computing ℙ( = u | G̃ = g)
Let  be a randomized labelling such that .Π ΠG* = G̃

Key observation 1:  
.ℙ( = u | G̃ = g) = ℙ (Π(1) = u | G̃ = g) = ∑

π

1{π(1)=u}ℙ (Π = π | G̃ = g)

Key observation 2: . ℙ (Π = π | G̃ = g) =
ℙ (G̃ = g |Π = π)

∑π′ 
ℙ (G̃ = g |Π = π′ )

Useful (because of the noise): . ℙ (Π = π, T̃ = t | G̃ = g)
Will compute this
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⋯
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The Gibbs sampler 
algorithm for our case

Remember that .X = T̃, Y = Π

So we alternate between two stages:

‣ Fix  and generate  from distribution .t π ℙ (Π = π | T̃ = t, G̃ = g)

‣ Fix  and generate  from the distribution .π t ℙ (T̃ = t |Π = π, G̃ = g)
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