"Root and community inference on the Latent growth process of a network" Authors: Harry Crane, Min Xu

nilavam.github.io nilava.metya@rutgers.edu

> Department of Mathematics Rutgers University

Nilava Metya

@ An infection starting from a source, and has spread out.

The real world problems

a An infection starting from a source, and has spread out.

through social networks.

The real world problems

@ An incorrect rumor has been generated by a person and has spread

a An infection starting from a source, and has spread out.

through social networks.

We will only observe the structure of spreading after the spreading has been done.

The real world problems

@ An incorrect rumor has been generated by a person and has spread

a An infection starting from a source, and has spread out.

through social networks.

We will only observe the structure of spreading after the spreading has been done. Want to find the source.

The real world problems

@ An incorrect rumor has been generated by a person and has spread

• All graphs are undirected. Standard: g = (V, E), V = V(g), E = E(g).

Capital Letters <-> Random objects
 Lowercase Letters <-> Fixed objects

NORCECTA

All graphs are undirected. Standard: g = (V, E), V = V(g), E = E(g).

o The affine preferencial allachment tree model with parameters α , β generates an increasing sequence that $V(T_i) = [i]$.

 $T_1 \subset T_2 \subset \cdots \subset T_n$ of random trees where T_i is a labelled tree with i nodes and nodes are labelled by their arrival time so

o The affine preferencial allachment tree model with parameters α , β generates an increasing sequence that $V(T_i) = [i]$.

o The generation Looks something like this:

 $T_1 \subset T_2 \subset \cdots \subset T_n$ of random trees where T_i is a labelled tree with i nodes and nodes are labelled by their arrival time so

- o The affine preferencial allachment tree model with parameters α , β generates an increasing sequence that $V(T_i) = [i]$.
- o The generation Looks something like this: > $T_1 = ([1], \{\})$

 $T_1 \subset T_2 \subset \cdots \subset T_n$ of random trees where T_i is a labelled tree with i nodes and nodes are labelled by their arrival time so

- o The affine preferential allachment tree model with parameters α , β generates an increasing sequence that $V(T_i) = [i]$.
- o The generation Looks something like this:
 - > $T_1 = ([1], \{\})$
 - > chosen with probability $rac{eta \cdot D_{T_{t-1}}(w_t) + lpha}{2eta(t-2) + lpha(t-1)}.$

 $T_1 \subset T_2 \subset \cdots \subset T_n$ of random trees where T_i is a labelled tree with i nodes and nodes are labelled by their arrival time so

Given T_{t-1} , add a node labelled t and a random edge (t, w_t) to get T_t where w_t is

Examples for $APA(\alpha, \beta)$

APA(1,0) gives the probability $\frac{1}{t-1}$. So a neighbor is chosen uniformly from $V(T_{t-1})$. [©] APA(0,1) gives the probability $\frac{D_{T_{t-1}}(w_t)}{2(t-2)}$. So a neighbor is chosen with probability proportional to its degree.

Examples for $APA(\alpha, \beta)$

$PAPER(\alpha, \beta, \theta)$

PAPER = Preferential Attachment Plus Erdös-Rényi

PAPER = Preferential Attachment Plus Erdös-Rényi

We say that a random graph G_n is distributed accordion to $PAPER(\alpha, \beta, \theta)$ if $G_n = T_n + R_n$ if $T_n \sim APA(\alpha, \beta)$ and $R_n \sim Erdös - Rényi(\theta)$.

 $PAPER(\alpha, \beta, \theta)$

PAPER = Preferential Attachment Plus Erdös-Rényi

We say that a random graph G_n is distributed accordion to $PAPER(\alpha, \beta, \theta)$ if $G_n = T_n + R_n$ if $T_n \sim APA(\alpha, \beta)$ and $R_n \sim Erdös - Rényi(\theta)$.

Will drop subscript

 $PAPER(\alpha, \beta, \theta)$

To tackle the problem, label ourselves

The problem: Given such an observed network, tell me about the root.

o the problem: Given such an observed network, tell me about the root.

o The problem: Given such an observed network, tell me about the root.

@ More concretely: Give me a set of vertices $C(G^*) \subseteq V(G^*)$ such that $\mathbb{P}(\bullet \in C(G^*)) \geq 95\%$.

@ So our goal now: Given $\epsilon \in (0,1)$, find $C_{\epsilon} \subseteq V = \{A, B, \dots\}$ such that $\mathbb{P}(\bullet \in C_{\epsilon}(G^*)) \ge 1 - \epsilon$.

So our goal now: Given $\epsilon \in (0,1)$, find $C_{\epsilon} \subseteq V = \{A, B, \cdots\}$ such that $\mathbb{P}(\bullet \in C_{\epsilon}(G^*)) \ge 1 - \epsilon$.

Trivial: Take $C_{\epsilon}(G^*) = V(G^*)$. Works for all ϵ .

@ So our goal how: Given $\epsilon \in (0,1)$, find $C_{\epsilon} \subseteq V = \{A, B, \dots\}$ such that $\mathbb{P}(\bullet \in C_{\epsilon}(G^*)) \ge 1 - \epsilon$.

o Trivial: Take $C_{\epsilon}(G^*) = V(G^*)$. Works for all ϵ .

The problem asks for: smallest possible C_{e} .

One issue with $C_{\epsilon}(G^*)$:

One issue with $C_{\epsilon}(G^*)$:

One issue with $C_e(G^*)$:

 C_{ϵ} either contains all \bullet or contains none of them.

$C_{\epsilon}(G^*)$ should be labelling equivariant

$C_{\epsilon}(G^*)$ should be labelling equivariant

which means that $\tau C_{\epsilon}(G^*) = C_{\epsilon}(\tau G^*)$ for all relabelings τ of G.

In that case, $\tau C_{\epsilon}(G^*) = C_{\epsilon}(\tau G^*)$ for every relabelling τ of G^* .

$C_{\epsilon}(G^*)$ should be labelling equivariant

which means that $\tau C_{\epsilon}(G^*) = C_{\epsilon}(\tau G^*)$ for all relabelings τ of G.

Use randomization to break ties.

The construction for $C_e(\cdot)$

@ Say we have a labelled observed graph $ilde{G} = g$ with randomized labels from G^* .

The construction for $C_e(\cdot)$

- Say u; is the node which is ith most likely to be the root. That is, $\mathbb{P}(\bullet = u_1 \ \tilde{G} = g) \ge \mathbb{P}(\bullet = u_2 \ \tilde{G} = g) \ge \cdots$

The construction for $C_{\epsilon}(\cdot)$

Say we have a labelled observed graph $\tilde{G} = g$ with randomized labels from G^* .

- \circ Say u_i is the node which is i^{th} most likely to be the root. That is, $\mathbb{P}(\bullet = u_1 \ \tilde{G} = g) \ge \mathbb{P}(\bullet = u_2 \ \tilde{G} = g) \ge \cdots$
- Take smallest k such that $\sum \mathbb{P}(\bullet = u_i \ \tilde{G} = g) \ge 1 \epsilon$. This is our Bayesian coverage set: $B_{\epsilon}(g) = \{u_1, \dots, u_k\}.$

The construction for $C_e(\cdot)$

 \circ say we have a labelled observed graph $\tilde{G} = g$ with randomized labels from G^* .

- Say u; is the node which is ith most likely to be the root. That is, $\mathbb{P}(\bullet = u_1 \ \tilde{G} = g) \ge \mathbb{P}(\bullet = u_2 \ \tilde{G} = g) \ge \cdots$
- Take smallest k such that $\sum \mathbb{P}(\bullet = u_i \ \tilde{G} = g) \ge 1 \epsilon$. This is our Bayesian coverage set: $B_{\epsilon}(g) = \{u_1, \dots, u_k\}.$
- observation of G (whose root is \blacklozenge), then $\mathbb{P}(\blacklozenge \in B_{\epsilon}(G^*)) \ge 1 \epsilon$.

The construction for $C_{\epsilon}(\cdot)$

 \circ say we have a labelled observed graph $\tilde{G} = g$ with randomized labels from G^* .

 \circ This is, in fact, an honest coverage set: if G^* is an alphabetically labelled

- \circ Say u_i is the node which is i^{th} most likely to be the root. That is, $\mathbb{P}(\bullet = u_1 \ \tilde{G} = g) \ge \mathbb{P}(\bullet = u_2 \ \tilde{G} = g) \ge \cdots$
- Take smallest k such that $\sum \mathbb{P}(\bullet = u_i \ \tilde{G} = g) \ge 1 \epsilon$. This is our Bayesian coverage set: $B_{\epsilon}(g) = \{u_1, \dots, u_k\}.$
- observation of G (whose root is \blacklozenge), then $\mathbb{P}(\blacklozenge \in B_{\epsilon}(G^*)) \ge 1 \epsilon$.

The construction for $C_e(\cdot)$

 \circ say we have a labelled observed graph $ilde{G}=g$ with randomized labels from G^* .

 \circ This is, in fact, an honest coverage set: if G^* is an alphabetically labelled

 \circ Let Π be a randomized labelling such that $\Pi G^* = \tilde{G}$.

Computing $\mathbb{P}(\bullet = u \ \tilde{G} = g)$

- \circ Let Π be a randomized labelling such that $\Pi G^* = \tilde{G}$.
- @ Key observation 1:

Computing $\mathbb{P}(=u \ G=g)$

$\mathbb{P}(\bullet = u \ \tilde{G} = g) = \mathbb{P}\left(\Pi(1) = u \ \tilde{G} = g\right) = \sum \mathbf{1}_{\{\pi(1)=u\}} \mathbb{P}\left(\Pi = \pi \ \tilde{G} = g\right).$

- \circ Let Π be a randomized labelling such that $\Pi G^* = \tilde{G}$.
- Key observation 1:
 $\mathbb{P}(\bullet = u \ \tilde{G} = g) = \mathbb{P}\left(\Pi(1) = u \ \tilde{G} = g\right)$

Key observation 2: $\mathbb{P}\left(\Pi=\pi \; ilde{G}=g\right)$

Computing $\mathbb{P}(=u \ G=g)$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

- \circ Let Π be a randomized labelling such that $\Pi G^* = \tilde{G}$.
- Key observation 1:
 $\mathbb{P}(\bullet = u \ \tilde{G} = g) = \mathbb{P}\left(\Pi(1) = u \ \tilde{G} = g\right)$

Key observation 2: $\mathbb{P}\left(\Pi=\pi\; ilde{G}=g\right)$

• Useful (because of the noise): $\mathbb{P}\left(\Pi = \pi, \tilde{T} = t \; \tilde{G} = g\right)$.

Computing $\mathbb{P}(=u \ G = g)$

$$egin{aligned} egin{aligned} egi$$

- \circ Let Π be a randomized labelling such that $\Pi G^* = \tilde{G}$.
- Key observation 1:
 $\mathbb{P}(\bullet = u \ \tilde{G} = g) = \mathbb{P}\left(\Pi(1) = u \ \tilde{G} = g\right)$

Key observation 2: $\mathbb{P}\left(\Pi=\pi \; ilde{G}=g\right)$

• Useful (because of the noise): $\mathbb{P}(\Pi = \pi, \tilde{T} = t \ \tilde{G} = g)$.

$Computing \mathbb{P}(=u \ G=g)$

$$g = \sum_{\pi} \mathbf{1}_{\{\pi(1)=u\}} \mathbb{P} \left(\Pi = \pi \ \tilde{G} = g \right).$$

$$egin{aligned} g \end{pmatrix} &= rac{\mathbb{P}\left(ilde{G} = g \ \Pi = \pi
ight)}{\sum_{\pi'} \mathbb{P}\left(ilde{G} = g \ \Pi = \pi'
ight)} \end{aligned}$$

Will compute this

A primer on Gibbs sampling

Interested in: $h(i, j) = \mathbf{1}_{(t, \pi)}$

Interested in: $h(i, j) = \mathbf{1}_{(t, \pi)}$

A primer on Gribbs sampling

Interested in: $h(i, j) = \mathbf{1}_{(t, \pi)}$

A primer on Gribbs sampling

 $egin{array}{ccc} X: & ilde{T} \ Y: & \Pi \end{array}$

The math?

A primer on Gribbs sampling

 $egin{array}{ccc} X : & ilde{T} \ Y : & \Pi \end{array}$

Interested in: $h(i, j) = \mathbf{1}_{(t, \pi)}$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition

 $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y=j) \to (X=k) \to (Y=l) \right] = p(X=k \ Y=j) \cdot p(Y=l \ X=k) = \frac{q_{kj}}{\sum_{t} q_{ti}} \cdot \frac{q_{kl}}{\sum_{t} q_{kt}},$

A primer on Gibbs sampling

 $egin{array}{ccc} X : & ilde{T} \ Y : & \Pi \end{array}$

ted in:
$$h(i,j) = \mathbf{1}_{(t,\pi)}$$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition

 $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y=j) \to (X=k) \to (Y=l) \right] = p(X=k \ Y=j) \cdot p(Y=l \ X=k) = \frac{q_{kj}}{\sum_{t} q_{ti}} \cdot \frac{q_{kl}}{\sum_{t} q_{kt}},$

A primer on Gibbs sampling

 $egin{array}{ccc} X : & ilde{T} \ Y : & \Pi \end{array}$

ted in:
$$h(i,j) = \mathbf{1}_{(t,\pi)}$$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y=j) \to (X=k) \to (Y=l) \right] = p(X=k \ Y=j) \cdot p(Y=l \ X=k) = \frac{q_{kj}}{\sum_{t} q_{tj}} \cdot \frac{q_{kl}}{\sum_{t} q_{kt}},$

 $\{Z_n\}$ is an irreducible aperiodic Markov chain with stationary distribution q.

A primer on Gibbs sampling

 $egin{array}{ccc} X : & ilde{T} \ Y : & \Pi \end{array}$

Interested in: $h(i, j) = \mathbf{1}_{(t,\pi)}$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y = j) \to (X = k) \to (Y = l) \right] = p(X = k \ Y = j) \cdot p(Y = l \ X = k) = \frac{q_{kj}}{\sum_{t} q_{tj}} \cdot \frac{q_{kl}}{\sum_{t} q_{kt}},$

 $\{Z_n\}$ is an irreducible aperiodic Markov chain with stationary distribution q. $\xrightarrow{\text{LLN}} \text{ if } h \text{ is a bounded function then } \sum_{i,j} h(i,j)p(i,j) \text{ can be}$

A primer on Gibbs sampling

 $egin{array}{ccc} X : & ilde{T} \ Y : & \Pi \end{array}$

approximated by
$$\frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$
.

Interested in: $h(i, j) = \mathbf{1}_{(t,\pi)}$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y=j) \to (X=k) \to (Y=l) \right] = p(X=k \ Y=j) \cdot p(Y=l \ X=k) = \frac{q_{kj}}{\sum_{i} q_{ti}} \cdot \frac{q_{kl}}{\sum_{i} q_{ki}},$

 $\{Z_n\}$ is an irreducible aperiodic Markov chain with stationary distribution q. <u>LLN</u> if h is a bounded function then $\sum_{i,j} h(i,j)p(i,j)$ can be

A primer on Cripps sampling

Start with $X = x_0$

 $egin{array}{ccc} X : & ilde{T} \ Y : & \Pi \end{array}$

approximated by
$$\frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$
.

Interested in: $h(i, j) = \mathbf{1}_{(t, \pi)}$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y=j) \to (X=k) \to (Y=l) \right] = p(X=k \ Y=j) \cdot p(Y=l \ X=k) = \frac{q_{kj}}{\sum_{i} q_{ti}} \cdot \frac{q_{kl}}{\sum_{i} q_{kl}},$

 $\{Z_n\}$ is an irreducible aperiodic Markov chain with stationary distribution q. <u>LLN</u> if h is a bounded function then $\sum_{i,j} h(i,j)p(i,j)$ can be

A primer on Cribbs sampling

Start with $X = x_0$

 $X: \tilde{T}$

. approximated by
$$\frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$
.

Interested in: $h(i, j) = \mathbf{1}_{(t,\pi)}$

Sample $Y = y_0$ from $p(y x_0)$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y = j) \to (X = k) \to (Y = l) \right] = p(X = k \ Y = j) \cdot p(Y = l \ X = k) = \frac{q_{kj}}{\sum_{t} q_{tj}} \cdot \frac{q_{kl}}{\sum_{t} q_{kt}},$

 $\{Z_n\}$ is an irreducible aperiodic Markov chain with stationary distribution q. <u>LLN</u> if h is a bounded function then $\sum_{i,j} h(i,j)p(i,j)$ can be

A primer on Cripps sampling

Start with $X = x_0$

 $X: ilde{T}$

Sample $Y = y_0$ from $p(y \ x_0)$

Sample $X = x_1$ from $p(x \ y_0)$

. approximated by
$$\frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$
.

Interested in: $h(i, j) = \mathbf{1}_{(t,\pi)}$

The math?

Let q be the distribution of Z = (X, Y). Generate a Markov chain $Z_n = (X_n, Y_n)$ with transition $\tilde{q}_{(ij),(kl)} = \mathbb{P}\left[(Y = j) \to (X = k) \to (Y = l) \right] = p(X = k \ Y = j) \cdot p(Y = l \ X = k) = \frac{q_{kj}}{\sum_{t} q_{tj}} \cdot \frac{q_{kl}}{\sum_{t} q_{kt}}.$

 $\{Z_n\}$ is an irreducible aperiodic Markov chain with stationary distribution q. <u>LLN</u> if h is a bounded function then $\sum_{i,j} h(i,j)p(i,j)$ can be

A primer on Gibbs sampling

Start with $X = x_0$

 $X: \tilde{T}$

Sample $Y = y_0$ from $p(y x_0)$

. . .

Sample $X = x_1$ from $p(x \ y_0)$

approximated by
$$\frac{1}{n} \sum_{i=1}^{n} h(X_i, Y_i)$$
.

Interested in: $h(i, j) = \mathbf{1}_{(t,\pi)}$

The Gibbs sampler algorithm for our case

Remember that $X = \tilde{T}, Y = \Pi$.

The Gibbs sampler algorithm for our case

 \circ Remember that $X = \tilde{T}, Y = \Pi$.

a so we alternate between two stages:

The Gibbs sampler algorithm for our case

- \circ Remember that $X = \tilde{T}, Y = \Pi$.
- a so we alternate between two stages:

. Fix t and generate π from distribution $\mathbb{P}\left(\Pi=\pi \ ilde{T}=t, ilde{G}=g\right)$.

The Gribbs sampler algorithm for our case

- Remember that $X = \tilde{T}, Y = \Pi$.
- a so we alternate between two stages:

The Gibbs sampler algorithm for our case

. Fix t and generate π from distribution $\mathbb{P}\left(\Pi=\pi \ ilde{T}=t, ilde{G}=g\right)$.

. Fix π and generate t from the distribution $\mathbb{P}\left(\tilde{T}=t \; \Pi=\pi, \tilde{G}=g\right)$.

Figure 20: Subgraph of the co-authorship graph comprising the 200 nodes with the highest posterior root probabilities. We label the 12 nodes with the highest root probabilities.

BEDLECOMPANY

[CX23] Harry Crane and Min Xu. Root and community inference on the latent growth process of a network. 2023. arXiv: 2107.00153 [stat.ME].

[CX21]

Harry Crane and Min Xu. Inference on the history of a randomly growing tree. Journal of the Royal Society of Statistics Series B, Volume 83, Issue 4, September 2021, Pages 639-668, https://doi.org/10.1111/rssb.12428.