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1 Introduction

Real-world networks, such as those modeling disease transmission, fake news propagation,
or computer virus spread, can be effectively represented using labeled growing trees. This
study focuses on a time-labeled tree, initiated with an infected individual at t = 1 (the root).
At each subsequent time step t = 2, 3, 4, · · · , individuals labeled t are infected from wt and
are added to the growing tree with an edge between t, wt.
The study involves looking at a sequence of trees TTT 1 ⊂ TTT 2 ⊆ · · · where TTT t has t labeled nodes
(indicating their time of arrival). The structure of the new tree depends on a probability
distribution linked to the pre-existing tree. The key condition is that the subgraph of Ti

induced by vertices {1, · · · , i − 1} remains connected for each i ≥ 2. The primary interest
lies in understanding the initial infected individuals, especially the root node.
This report delves into the model for a tree growing from a single source, referencing [CX23;
CX21]. A presented Gibbs algorithm computes conditional probabilities to identify a set of
nodes containing the root with confidence. The algorithm is applicable to unlabeled graphs,
which may not be trees due to data collection errors introducing unwanted edges. The input
graph is unlabeled since the order of infection is unknown during observation. An online
presentation is accessible at [Met23].

2 The Model

The modeling process begins with the growth of a tree, followed by the addition of error
edges based on a probability distribution. The tree part adheres to the affine preferential
attachment (APA) model, and the error follows the Erdös-Rényi distribution.
Definition 1 (Affine Preferential Attachment). The APA(α, β) tree model generates an
increasing sequence TTT 1 ⊂ TTT 2 ⊆ · · · of random trees where TTT i is a labeled tree with V (TTT i) =
[i]. Starting with TTT 1 = ({1},∅), subsequent trees are built by introducing a node t and an
edge e = {t, wt} at each step t, where wt ∈ Vt−1 is chosen with probability

β·degT t−1
(wt)+α

2β(t−2)+α(t−1)
.

Definition 2 (Erdös-Rényi). The Erdös-Rényi model on n vertices with parameter θ ∈
[0, 1], denoted by ER(n, θ), involves constructing undirected simple edges randomly among n
labeled nodes, where the probability of an edge’s existence is θ. Alternatively, the probability
of generating a graph with n nodes and m edges is θm(1− θ)(

n
2)−m.

The model used for networks in disease transmission or the spread of fake news is the union
of graphs from the above two models.
Definition 3 (PAPER). The PAPER(α, β, θ) (Preferential Attachment Plus Erdös-Rényi)
generates a sequence of graphs {GGGn}n∈N such that GGGn = TTT n ∪ RRRn, where {TTT 1 ⊂ TTT 2 ⊂
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· · · } is generated according to APA(α, β) and {RRRn}n∈N is generated with RRRn ∼ ER(n, θ)
independently, with V (TTT n) = V (RRRn) = [n] for each n ∈ N. Here, this is the union of two
graphs on the same set of vertices, taking the union of edges and ignoring multi-edges.

3 The Root Inference Problem
Let GGGn ∼ PAPER(α, β, θ) be a random graph. Only the unlabeled shape is observed. This
graph is labeled using alphabets An to obtain GGG∗

n via the bijection ρ : [n]
∼−→ Un, inducing a

graph isomorphism ρ∗ : GGGn
∼−→ GGG∗

n. The goal is to infer ρ1 := ρ(1).
Without information about ρ, finding ρ1 is impossible. Therefore, a confidence set is sought
for a given confidence level.
Definition 4 (Confidence Set). Let ε ∈ (0, 1). Cε(GGG

∗
n) ⊆ Un is a 1 − ε level confidence set

for the root if P (ρ1 ∈ Cε(GGG
∗
n)) ≥ 1− ε.

A confidence set exists because Cε(GGG
∗
n) = Un works ∀ε ∈ (0, 1), allowing for the smallest one

to be exist by the well-ordering principle. Smaller confidence sets provide more information
about the root. Consequently, our objective is to identify the smallest confidence set that
meets the aforementioned confidence criteria.
Remark 5. Note that if ρ, ρ′ : [n] ∼−→ Un induce isomorphisms ρ∗ = ρ′∗ : GGGn

∼−→ GGG∗
n, then

ρi ∈ Cε(GGG
∗
n) ⇐⇒ ρ′i ∈ Cε(GGG

∗
n) for any node i. This means that one would want the Cε

to be labeling equivariant : τCε(GGG
∗
n) = Cε(τGGG

∗
n)∀τ : Un

∼−→ Un. In the presented algorithm,
randomization is used to break ties, so τCε(GGG

∗
n)

d
= Cε(τGGG

∗
n)∀τ : Un

∼−→ Un.

4 Methodology
This section begins with the motivation that no label is better than any other since only an
unlabeled graph is observed. Let GGG∗

n = ρ∗GGGn be a labeled observation, and let Λ : Un
∼−→ Un

be a random relabel. Denote Π = Λρ : [n]
∼−→ Un and Π∗ := Λ∗ρ∗. Consider G̃GGn := Π∗GGGn.

Since Λ is uniformly random, Π is also uniformly random. Recall thatGGGn has the structure of
TTT n∪RRRn. Define T̃TT n := Π∗TTT n as the randomly labeled latent tree. Based on such a randomly
labeled G̃, a method is described to find a Cε for the root Π1. Suppose the probabilities
pu := P(Π1 = u | G̃GGn = ggg) are known. Sort the nodes u1, · · · , un such that pu1 ≥ · · · ≥ pun .
Propose the credible set Bε (ggg) := {u1, · · · , uk} (breaking ties at random), where k is the
minimum such that

∑k
i=1 pui

≥ 1 − ε. This Bayesian credible set is, in fact, an honest
confidence set, as stated in the following theorem.
Theorem 6. Let GGGn ∼ PAPER(α, β, θ), and let ρ : [n] → Un be a relabeling such that
GGG∗

n = ρ∗GGGn. Then for any ε ∈ (0, 1), P (ρ1 ∈ Bε(GGG
∗
n)) ≥ 1− ε.

Note that in the above, it was assumed pu is known. This is crucial to compute. It is
observed that P(Π1 = u | G̃GGn = ggg) =

∑
π 111{π1=u} · P(Π = π | G̃GGn = ggg). However, the

RHS term is supported on only a subset of {π | π1 = u} because not all π are valid labels
for growing trees. For example, 1—3—2 is invalid. This computation involves summing
over all spanning trees T̃TT n. Thus pu =

∑
ttt⊂ggg

∑
π∈hist(ttt)
π1=u

P(Π = π, T̃TT n = ttt | G̃GGn = ggg),

where hist(ttt) = {π : [n]
∼−→ Un | ttt ∩ π([i]) is connected ∀i ∈ [n]} is the set of bijections π
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representing a valid arrival ordering for the nodes of ttt, and the outer sum is taken over all
spanning trees ttt of ggg. This already reduces the space over which the sum is taken. A Gibbs
sampling algorithm will compute P(Π = π, T̃TT n = ttt | G̃GGn = ggg).

5 The Gibbs Sampling Algorithm for Computing
The Gibbs sampling procedure is generally used to find the joint distribution when condi-
tionals are known or easy to compute. The algorithm alternates between two steps:

1. Fix ttt and generate π from P(Π = π | T̃TT n = ttt, G̃GGn = ggg), and
2. Fix π and generate ttt from P(T̃TT n = ttt | Π = π, G̃GGn = ggg).

For the first step, P(Π = π | T̃TT n = ttt, G̃GGn = ggg) = P(Π=π | T̃TTn=ttt)·P(G̃GGn=ggg | Π=π,T̃TTn=ttt)

P(T̃TTn=ttt | G̃GGn=ggg)
. One only

needs to sample from P(Π = π | T̃TT n = ttt) because P(G̃GGn = ggg | Π = π, T̃TT n = ttt) =((n2)−n+1

m−n+1

)−1

and the denominator does not involve Π. It’s worth mentioning that π from
P(Π = π | T̃TT n = ttt) is the same as sampling uniformly π from hist(ttt). The second step is
carried out by iteratively sampling a new parent for each of the nodes. We leave it to the
reader to look up details of the last two statements from [CX23, Sections 4.1, 4.2].

6 Appendix

1. Here is a proof of Theorem 6. Note that pu := P(Π1 = u | G̃GGn = ggg) = P(Π1 =
τ(u) | G̃GGn = τggg). This implies pu ≥ pv ⇐⇒ pτ(u) ≥ pτ(v). By construction of
Bε in Section 4, it follows that Bε(τggg)

d
= τBε(ggg)∀τ . Now let ρ : [n]

∼−→ Un be such
that GGG∗

n = ρ∗GGGn and Λ : Un
∼−→ Un be random. Let Π = Λρ and G̃GGn = Γ∗GGG. Then

P[ρ1 ∈ Bε(GGG
∗
n)] = P[(Λρ)1 = Λ(ρ1) ∈ ΛBε(GGG

∗
n)] = P[Π1 ∈ Bε(G̃GGn)] ≥ 1− ε where the last

inequality is true because PPP [Π1 ∈ Bε(G̃GGn) | G̃GGn = ggg] ≥ 1− ε for any Un-labelled graph ggg.
2. Some notation:

• All graphs are undirected. V (·), E(·) represent the vertices and edges respectively.
• f : A

∼−→ B means a bijection in case of sets and an isomorphism in case of graphs.
• [n] = {1, · · · , n} and N = {1, 2, 3, · · · }.
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