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A : OK so let’s start. Why don’t we start with probability?
C : Can you please state the Borel-Cantelli lemmas?
Me: Yes. Starts stating verbally.
C : Could you write on the board?
Me: Goes to board. The first Borel-Cantelli lemma states that if {Ai}∞i=1 is a collection of events such that∑

i P(Ai) < ∞ then P (lim supAn) = 0. The second Borel-Cantelli lemma states that if {Ai}∞i=1 is a
collection of independent events such that

∑
i P(Ai) = ∞ then P (lim supAn) = 1.

C : Very good. Now answer this question. You have a fair coin and you’re tossing it infinitely many times.
What is the probability that only finitely many heads turn up?

Me: Are you suggesting that we could use the Borel-Cantelli lemmas for this?
C : They might be useful.
Me: So we want to define these events Ai judiciously. Let’s see. We want to find P (finitely many heads).

What if we compare it with P (infinitely many tails) and define Ai = {ith coin is tail} and
∑

P(Ai) =
∞ so that P (infinitely many tails) = 1. Also these Ai are independent. Makes some trivial mistake
about getting the inequality correct between P (finitely many heads) and P (infinitely many tails). But
got it finally. But this gives a tautology that the probability is at most 1.

C : Yes so you have to define Ai as something else so that you can extract more information.
Me: Maybe let’s write it differently P (finitely many heads) = 1− P (infinitely many heads). Ah so we take

Ai = {ith coin is head} which still makes the sum of probabilities diverge. By Borel-Cantelli, the latter
proabbility is 1, so the probability we want is 0.

C : Very good. Does it matter that it’s a fair coin?
Me: No, it can be any p−coin with p > 0.
C : Do we need independence?
Me: I don’t remember a counterexample on the top of my head, but I know that the lemma fails without

the independence assumption.
C : Those were all my questions.
B : Maybe I can ask now. Can you give an example of a convex set and a non-convex set?
Me: Draws the unit circle in R2 and writes the set description. This is a convex set. A non-convex set

could be {−1, 1} in R.
B : Good. Consider a closed convex set A in Rn. Consider the function f(x) = d(x,A)2. Is it convex?

Can you tell me some regularity properties?
Me: Sure, let’s try maybe an example. Draws the graph in R2 for A = [0, 1]. In this case, it seems to be

convex and differentiable.
B : What happens if A is not convex? Can you show the graph for your non-convex example?
Me: Sure. Draws the graph for A = {−1, 1}. This is clearly not convex, and not differentiable. Look at 0.
B : Yes so there can be kink, right? Now what about closed convex A?
Me: Thinks about it, completely lost because don’t know ‘yes’ or ‘no’.
B : Ok so I tell you that it’s convex and differentiable. Can you prove it.
Me: Starts proving convexity using the first definition of convexity.
B : Maybe we’re running out of time now. I’ll tell you my next question. Is it strongly convex?
Me: Starts thinking, writes definition. Well, inside A the function is constant 0, so it can’t be strongly

convex.
B : What about its behaviour outside A?
Me: Starts thinking, lost again.
B : What happens if A is the square?
Me: Draws the square. If we go outward, it’s increasing and behaves quadratically.
B : But it’s not really about only this direction right? We need to consider all directions. What if you

walk parallel to a side?
Me: Makes a very bad mistake again, to find the projection of each x on A.
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A : Where does the distance minimize? It’s like a perpendicular, right?
Me: Oh, my bad. Yes, along this direction, the function stays constant because the lengths of the perpen-

diculars are the same. So not strongly convex.
B : OK. Maybe we can move onto someone else now.
D : I could ask next. Can you tell me about solving polynomial equations?
Me: The setting is in R = C[x1, · · · , xn]. We are given polynomials f1, · · · , fk ∈ R and we want to find

common solutions. From high school the way to solve, say, a system of simultaneous linear equations
in variables x, y is we eliminate the x and solve for y, then plug the value of y into an equation to
recover x. This is analogous to polynomial division in one variable, where we ‘cancelled’ the x. So we
need a formal notion of polynomial division in multiple variables. This gives us the notion of monomial
ordering which is really a refinement of the division poset on all monomials. Now, we need a reduced
form of the collection of these polynomials to do something analogous to the division algorithm in one
variable. This is resolved by something called a Gröbner basis. A Gröbner basis is · · ·

D : Let’s say we know about Gröbner bases.
Me: Alright. So we want to focus on the ideal I = ⟨f1, · · · , fn⟩ ⊆ R. I’ll talk about elimination theory.

Let’s fix a lex order with x1 > · · · > xn. What I told earlier about eliminating x to get a linear
equation is y is exactly starting with the ideal in C[x, y] generated by the two linear polynomials and
intersecting it with C[y]. In this sense, we define the ℓth elimination ideal as Iℓ = I ∩ C[xℓ+1, · · · , xn].
A helpful fact to deal with elimination ideals is that if G is a Gröbner basis for I with the given lex
ordering, then Gℓ = G ∩ C[xℓ+1, · · · , xn] is a Gröbner basis for Iℓ. So what do we do now. Let’s use
x, y, z instead of x1, · · · , xn.

D : Your z being xn?
Me: Yes, and n = 3. So the idea was that we keep on eliminating variables, until we reduce to an ideal

with only one variable. Say we solved the equations simultaneously and we got to I ∩ C[z]. Then we
find the root of the corresponding equation. Or the simultaneous equations in z.

D : Can there be multiple equations in the last elimination ideal?
Me: Oh! There will be exactly one because C[z] is a PID. In fact, this is related to one of the characteriza-

tions of a Gröbner basis. So we solve this equation in z. Then we can go to the equations in I ∩C[y, z],
substitute those values of z and then solve for y. This would give solutions for (y, z). This happens
for some specific values of z, which I’ll talk about in a minute (the Extension theorem). After getting
those values of y we go to I and solve for x after substituting for y, z. Now the question was: which
solutions z of I ∩ C[z] extend to solutions (y, z) of I ∩ C[y, z]? The extension theorem says that if a
partial solution aaa = (a2, · · · , an) of I ∩C[x2, · · · , xn] extends to a solution (a1, aaa) of I ⊆ C[x1, · · · , xn]
if the leading terms of a Gröbner basis of I with an ordering where any term containing x1 is more
than any term containing the other variables (equivalently, leading terms of I) do not simultaneously
vanish at aaa.

D : Can you mention some issues that might come up with this method of solving equations?
Me: The first thing that comes to my mind is that usually the equations have high degree and due to

Abel/Galois we cannot solve the equations exactly. This means we need to use numerical methods. So
we solve for z, and then plug in to solve for y. Already the approximate values of z make the equations
for y approximate, whence the errors in the solutions of y have even more error. Usually there are
more variables, so the errors accumulate together to give very inaccurate solutions.

D : How do you overcome this? Any alternatives? Something to do with eigenvalues?
Me: Ah right. So let me tell you the general setup. We are only interested in zero dimensional ideals I,

that is, there are finitely many solutions. Now I is zero dimensional iff A = R/I is finite dimensional.
In fact, we can find this dimension. A basis is given by the monomials not divisible by leading terms
of I.

D : Say that again?
Me: A basis of A is given by all monomials in R which are not divisible by any leading monomial of I (or a

Gröbner basis of I). Now this is useful because if I is a zero-dimensional ideal then fixing a polynomial
f ∈ R, the eigenvalues of the linear map mf : A → A (where mf ([g]) = [fg]) exactly coincides with
f(V (I)).

D : Any assumptions?
Me: Yes we need that I is radical. The way we use this to solve systems of polynomial equations is taking

2



f to be xi, the projection onto the ith coordinate. This way we can recover all coordinates of V (I).
Well, modulo repeated solutions.

D : What do you mean repeated solutions?
Me: I mean double roots. Looks at professor· · · Oh! There’s not double roots because I is radical.
D : How many f do you need.
Me: n of them. We can also take random linear forms.
D : But why? You still need n of them. Something to do with eigenvectors?
Me: Oh I remember there was a section about that, but I don’t remember anything from there honestly.
D : Maybe we can move on to someone else now.
A : Can you write down a typical optimization problem? With the inequalities and equalities.
Me: I write min

x∈Rn
f(x) subject to gi(x) ≤ 0∀1 ≤ i ≤ m,hi(x) = 0∀1 ≤ i ≤ k.

A : When do we say that the problem is convex?
Me: When gi are all convex and hi are affine. But this is only for computational purposes. In general the

constaint set can be convex without all constraints being of this type.
A : Uhhh, what about f?
Me: Oh oh oh! f also has to be convex.
A : Can you write down the KKT conditions?
Me: I don’t remember them on the top of my head.
A : That’s ok. Can you write down a typical SDP problem?
Me: Yes, it looks like min

X∈Sn
Tr(CX) subject to the linear constraints Tr(AiX) = bi∀1 ≤ i ≤ m and X ⪰ 0.

Here C,Ai are all symmetric and Sn stands for the space of n× n symmetric matrices.
A : Can you tell me why SDP is a generalization of LP?
Me: I’ll take a generic LP and write an SDP which has the same optimal value and the optimal solutions

can be recovered. Are you happy with the following generic LP: min
x∈Rn

c⊤x subject to Ax = b, x ≥ 0

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm?
A : Sure that’s ok.
Me: So the SDP we want to form will have the variable matrix X modelling the parameter x in LP, the

obvious way is to put x in the diagonals of X and force the off-diagonal entries of X to be 0 via the
linear equalities Tr(EijX) = 0 for each i < j. The constraint x ≥ 0 is equivalent to X ⪰ 0 with the
above understanding. So the equivalent SDP is min

X∈Sn
Tr(diag(c)X) subject to Tr(EijX) = 0 for each

i < j, where diag(c) is the n× n matrix with diagonal entries c.
A : Uhh what about Ax = b?
Me: Oh sorry! I will add the additional constraints that Tr(diag(ai)X) = bi where ai is the ith row of A.
A : Can you write down a generic SOCP problem?
Me: For the second order cone problem, I first will write the Laurent cone which is Ln+1 = {(x, t) ∈ Rn+1 :

||x||2 ≤ t}. And now the optimization problem is: min
x∈Rn

f⊤x subject to (Aix+bi, c
⊤
i x+di) ∈ Ln+1∀1 ≤

i ≤ m.
A : Can you write it as an SDP?
Me: Ahh, let me try to look at the general constraint ||Ax + b||2 ≤ c⊤x + d. Now we square it (Ax +

b)⊤(Ax + b) ≤ (c⊤x + d)2. What if we group the quadratic and linear terms together. So we maybe
try to do something with A⊤A− cc⊤?

A : Something about Schur complements?

Me: Uhhh. . . Thinks how to manipulate. Maybe

[
I A
A⊤ I

]
?

A : Not identity but ssomething else. It’s okay, let it be. It takes time. Let’s see if someone else has any
questions?

D : Yes I can ask. Can you tell me what’s a multipolynomial discriminant?
Me: I do not know what a multipolynomial discriminant is, but I can tell you about multipolynomial

resultants.
D : Oh yes right, that’s what it was called. Sure tell me about it.
Me: Let me define it using a theorem. Given n+1 homogeneous polynomials F0, · · · , Fn ∈ C[x0, · · · , xn] of

total degrees d0, · · · , dn respectively, say Fi =
∑

|α|=d

ui,αx
α, there is a unique polynomial Resd0,··· ,dn ∈
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Z[all ui,α] satisfying the following:

– Fi’s have a common nontrivial solution iff Res is zero.

– Res(xd0
0 , · · · , xdn

n ) = 1.

– Res is irreducible.

D : What can you tell me about the geometry of resultants?
Me: Well, the point of resultants is to eliminate n+1 variables from n+1 homogeneous equations. Thinks

what to say
D : So you have this polynomial residing in this huge space of coefficients. Where does the corresponding

variety reside? What about the variety of the original polynomials?
Me: If we consider the polynomials as a general polynomial, that is, the ui,α’s and xi’s are all treated

as variables. The corresponding variety lies in CN × Pn where N is the total number of coefficients.
If we want to eliminate the n + 1 variables x0, · · · , xn, on the geometry side we are only taking the
coordinates corresponding to the CN part.

D : What is that called?
Me: Projection. And the projection is given by the . . . the closure of the projection is cut out by the

equation given by Res.
D : Do you know about complete varieties?
Me: No.
D : It’s a variety X for which the projective morphism X × Y → Y is closed for any variety Y . Projective

varieties are complete.
Me: Okay, so in this case the image is closed. So Res gives the image of the projection actually.
D : What’s the codimension of this projected variety?
Me: It’s ideal is princiaplly generated, so codimension one.
D : How many connected components does it have?
Me: Uhhh I’m not sure? Looks at the board. Oh Res is irreducible, so one component.
D : Anybody else wants to ask anything? everybody looking at each other.
E : I think Nilava has answered his fair share of questions.
C : Now we ask Nilava to wait outside while we discuss.
Me: Walks out of the door and waits.
A : You can come in now.

Everyone: Congratulations!
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