COMPLEXITY OF OPTIMIZATION

Greg DePaul Serkan Hoşten Nilava Metya Ikenna Nometa

October 21, 2023

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

COMPLEXITY OF OPTIMIZATION

October 21, 2023

∢ ≣⇒

æ

Image: A math black

2 Polar Degree

3 Connecting these two

WASSERSTEIN DISTANCE AND ALGEBRAIC STATISTICS

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

Complexity of optimization

October 21, 2023

< ∃⇒

æ

Maximize f = x + y + z

subject to $g = x^4 + y^4 + 3z^4 - z - 1 = 0$

 $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$

 $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda (12z^3 - 1)$ $\partial_\lambda \mathcal{L} = g$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another **generic** linear constraint makes the degree 4.

Adding another generic equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

æ

Maximize f = x + y + z $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$ $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda(12z^3 - 1)$ $\partial_\lambda \mathcal{L} = q$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another **generic** linear constraint makes the degree 4.

Adding another **generic** equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

Maximize f = x + y + z $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$ $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda(12z^3 - 1)$ $\partial_\lambda \mathcal{L} = q$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another generic linear constraint makes the degree 4.

Adding another **generic** equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

Maximize f = x + y + z $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$ $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda(12z^3 - 1)$ $\partial_\lambda \mathcal{L} = q$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another generic linear constraint makes the degree 4.

Adding another generic equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

Maximize f = x + y + z $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$ $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda(12z^3 - 1)$ $\partial_\lambda \mathcal{L} = q$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another **generic** linear constraint makes the degree 4.

Adding another **generic** equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

Maximize f = x + y + z $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$ $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda(12z^3 - 1)$ $\partial_\lambda \mathcal{L} = q$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another **generic** linear constraint makes the degree 4.

Adding another **generic** equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

・ロト ・四ト ・ヨト ・ヨト

1 LAGRANGE MULTIPLIERS

2 Polar Degree

③ CONNECTING THESE TWO

WASSERSTEIN DISTANCE AND ALGEBRAIC STATISTICS

Greg DePaul, Serkan Hoşten, **Nilava Metya**, Ikenna No

Complexity of optimization

October 21, 2023

< ∃⇒

æ

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $v = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. It is a curve, name it P(X, v), is determined by f and $\partial_v f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

So this P(X, V) typically has degree d(d-1).

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $\boldsymbol{v} = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. It is a curve, name it $P(X, \boldsymbol{v})$, is determined by f and $\partial_v f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $\boldsymbol{v} = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. It is a curve, name it $P(X, \boldsymbol{v})$, is determined by f and $\partial_v f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $\boldsymbol{v} = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. It is a curve, name it $P(X, \boldsymbol{v})$, is determined by f and $\partial_v f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $\boldsymbol{v} = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. It is a curve, name it $P(X, \boldsymbol{v})$, is determined by f and $\partial_{\boldsymbol{v}} f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $\boldsymbol{v} = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. It is a curve, name it $P(X, \boldsymbol{v})$, is determined by f and $\partial_{\boldsymbol{v}} f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

DEFINITION (POLAR VARIETY)

The polar variety of a variety $X \subseteq \mathbb{P}^n$ with respect to a projective subspace $V \subseteq \mathbb{P}^n$ is

 $P(X,V) = \overline{\{\boldsymbol{p} \in \operatorname{Reg}(X) \setminus V : V + \boldsymbol{p} \text{ intersects } X \text{ at } \boldsymbol{p} \text{ non-transversally}\}}.$

Let $i \in \{0, 1, \dots, \dim X\}$. If V is generic with $\dim V = \operatorname{codim}(X) - 2 + i$, then the degree of P(X, V) is independent of V:

 $\mu_i(X) = \deg P(X, V).$

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

프 🖌 🔺 프 🕨

DEFINITION (POLAR VARIETY)

The polar variety of a variety $X \subseteq \mathbb{P}^n$ with respect to a projective subspace $V \subseteq \mathbb{P}^n$ is

 $P(X,V) = \overline{\{\boldsymbol{p} \in \operatorname{Reg}(X) \setminus V : V + \boldsymbol{p} \text{ intersects } X \text{ at } \boldsymbol{p} \text{ non-transversally}\}}.$

Let $i \in \{0, 1, \dots, \dim X\}$. If V is generic with $\dim V = \operatorname{codim}(X) - 2 + i$, then the degree of P(X, V) is independent of V:

 $\mu_i(X) = \deg P(X, V).$

D LAGRANGE MULTIPLIERS

2 Polar Degree

③ CONNECTING THESE TWO

WASSERSTEIN DISTANCE AND ALGEBRAIC STATISTICS

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

Complexity of optimization

October 21, 2023

< ∃⇒

æ

FOR A GENERAL OPTIMIZATION PROBLEM

Given a compact smooth algebraic variety \mathcal{M} in \mathbb{R}^m , we consider a linear functional ℓ and an affine-linear space L of codimension r in \mathbb{R}^m . It is assumed that the pair (ℓ, L) is in general position^{*} relative to \mathcal{M} . Our aim is to study the following optimization problem:

maximize ℓ over $L \cap \mathcal{M}$.

t

Theorem

The algebraic degree of the above problem is $\mu_r(\mathcal{M})$.

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

^{*} this assumption is very important

[†]Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. "Wasserstein distance to independence models". In: Journal of symbolic computation 104 (2021), pp. 855=873. E + (E + E + C) + (C) +

D LAGRANGE MULTIPLIERS

2 Polar Degree

③ CONNECTING THESE TWO

WASSERSTEIN DISTANCE AND ALGEBRAIC STATISTICS

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

Complexity of optimization

October 21, 2023

< ≣⇒

æ

WASSERSTEIN DISTANCE

Let $d: [n] \times [n] \to \mathbb{R}_{\geq 0}$ be a metric on [n]. Consider the polytope

$$B_d = \operatorname{conv}\left\{\frac{1}{d_{ij}}(\boldsymbol{e}_i - \boldsymbol{e}_j) : i \neq j\right\} \subseteq \underbrace{\{\mathbf{1}^\top \boldsymbol{x} = 0\}}_{H_{n-1}} \subseteq \mathbb{R}^n.$$

 B_d is compact, convex, origin symmetric and has nonzero relative interior on H_{n-1} . Thus induces a norm on H_{n-1} , and thus a metric on any affine hyperplane perpendicular to **1**. In particular, given any two probability vectors $\boldsymbol{\mu}, \boldsymbol{\nu} \in \Delta_{n-1}$, we define their Wasserstein distance based on d to be

$$W_d(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \left\{ t > 0 : \boldsymbol{\nu} \in \boldsymbol{\mu} + tB_d \right\}.$$

We will consider distance of a point μ from a *statistical* model \mathcal{M} , namely,

$$W_d(\boldsymbol{\mu}, \mathcal{M}) = \inf_{\boldsymbol{\nu} \in \mathcal{M}} W_d(\boldsymbol{\mu}, \boldsymbol{\nu}).$$

WASSERSTEIN DISTANCE

Let $d: [n] \times [n] \to \mathbb{R}_{\geq 0}$ be a metric on [n]. Consider the polytope

$$B_d = \operatorname{conv}\left\{\frac{1}{d_{ij}}(\boldsymbol{e}_i - \boldsymbol{e}_j) : i \neq j\right\} \subseteq \underbrace{\{\mathbf{1}^\top \boldsymbol{x} = 0\}}_{H_{n-1}} \subseteq \mathbb{R}^n.$$

 B_d is compact, convex, origin symmetric and has nonzero relative interior on H_{n-1} . Thus induces a norm on H_{n-1} , and thus a metric on any affine hyperplane perpendicular to **1**. In particular, given any two probability vectors $\boldsymbol{\mu}, \boldsymbol{\nu} \in \Delta_{n-1}$, we define their Wasserstein distance based on d to be

$$W_d(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \left\{ t > 0 : \boldsymbol{\nu} \in \boldsymbol{\mu} + tB_d \right\}.$$

We will consider distance of a point μ from a *statistical* model \mathcal{M} , namely,

$$W_d(\boldsymbol{\mu}, \mathcal{M}) = \inf_{\boldsymbol{\nu} \in \mathcal{M}} W_d(\boldsymbol{\mu}, \boldsymbol{\nu}).$$

WASSERSTEIN DISTANCE

Let $d: [n] \times [n] \to \mathbb{R}_{\geq 0}$ be a metric on [n]. Consider the polytope

$$B_d = \operatorname{conv}\left\{\frac{1}{d_{ij}}(\boldsymbol{e}_i - \boldsymbol{e}_j) : i \neq j\right\} \subseteq \underbrace{\{\mathbf{1}^\top \boldsymbol{x} = 0\}}_{H_{n-1}} \subseteq \mathbb{R}^n.$$

 B_d is compact, convex, origin symmetric and has nonzero relative interior on H_{n-1} . Thus induces a norm on H_{n-1} , and thus a metric on any affine hyperplane perpendicular to **1**. In particular, given any two probability vectors $\boldsymbol{\mu}, \boldsymbol{\nu} \in \Delta_{n-1}$, we define their Wasserstein distance based on d to be

$$W_d(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \left\{ t > 0 : \boldsymbol{\nu} \in \boldsymbol{\mu} + tB_d \right\}.$$

We will consider distance of a point μ from a *statistical* model \mathcal{M} , namely,

$$W_d(\boldsymbol{\mu}, \mathcal{M}) = \inf_{\boldsymbol{\nu} \in \mathcal{M}} W_d(\boldsymbol{\mu}, \boldsymbol{\nu}).$$

Algebraic Statistics

Consider two random variables $X_1, X_2 \sim \text{Bernouli}(p)$ and $N = X_1 + X_2$. So N =number of heads on tossing a coin twice independently which has probability p of getting a head. Associate with it the curve given by $(\mathbb{P}[N=0], \mathbb{P}[N=1], \mathbb{P}[N=2]) = (p^2, 2p(1-p), (1-p)^2)$ for $p \in [0, 1]$.

To get to one more level of abstraction, we consider models of the form $\mathcal{M} = \Delta_{n-1} \cap X$ for some affine variety X.

As long as μ and \mathcal{M} are generic with respect to B_d , there will be a unique intersection point, and it will be in the relative interior of one of the faces F of B_d . We let \mathcal{L}_F be the linear subspace generated by the vertices of the face F of B and let ℓ_F be any linear functional that attains its maximum over B at F. Then the optimal solution to

minimize $\ell_F(\boldsymbol{\nu})$ subject to $\boldsymbol{\nu} \in (\boldsymbol{\mu} + \mathcal{L}_F) \cap \mathcal{M}$

is the point we are looking for.

Consider two random variables $X_1, X_2 \sim \text{Bernouli}(p)$ and $N = X_1 + X_2$. So N =number of heads on tossing a coin twice independently which has probability p of getting a head. Associate with it the curve given by $(\mathbb{P}[N=0], \mathbb{P}[N=1], \mathbb{P}[N=2]) = (p^2, 2p(1-p), (1-p)^2)$ for $p \in [0, 1]$.

To get to one more level of abstraction, we consider models of the form $\mathcal{M} = \Delta_{n-1} \cap X$ for some affine variety X.

As long as μ and \mathcal{M} are generic with respect to B_d , there will be a unique intersection point, and it will be in the relative interior of one of the faces F of B_d . We let \mathcal{L}_F be the linear subspace generated by the vertices of the face F of B and let ℓ_F be any linear functional that attains its maximum over B at F. Then the optimal solution to

minimize $\ell_F(\boldsymbol{\nu})$ subject to $\boldsymbol{\nu} \in (\boldsymbol{\mu} + \mathcal{L}_F) \cap \mathcal{M}$

is the point we are looking for.

Consider two random variables $X_1, X_2 \sim \text{Bernouli}(p)$ and $N = X_1 + X_2$. So N =number of heads on tossing a coin twice independently which has probability p of getting a head. Associate with it the curve given by $(\mathbb{P}[N=0], \mathbb{P}[N=1], \mathbb{P}[N=2]) = (p^2, 2p(1-p), (1-p)^2)$ for $p \in [0, 1]$.

To get to one more level of abstraction, we consider models of the form $\mathcal{M} = \Delta_{n-1} \cap X$ for some affine variety X.

As long as $\boldsymbol{\mu}$ and \mathcal{M} are generic with respect to B_d , there will be a unique intersection point, and it will be in the relative interior of one of the faces F of B_d . We let \mathcal{L}_F be the linear subspace generated by the vertices of the face F of B and let ℓ_F be any linear functional that attains its maximum over B at F. Then the optimal solution to

minimize $\ell_F(\boldsymbol{\nu})$ subject to $\boldsymbol{\nu} \in (\boldsymbol{\mu} + \mathcal{L}_F) \cap \mathcal{M}$

is the point we are looking for.

Polar degree again

We need to consider this optimization problem for every face F of B_d . Also $\mathcal{M} = \Delta_{n-1} \cap X$. Recall the numbers 36, 12, 4, 0 from the earlier example on Lagrange multipliers. We study these Wasserstein degrees w(X, F).

By the earlier theorem we stated, these numbers are always upper bounded by the polar degree $\mu_i(X)$ where i = dim(X) - codim(F) + 1.

글 > - 4 글 >

Ξ.

Polar degree again

We need to consider this optimization problem for every face F of B_d . Also $\mathcal{M} = \Delta_{n-1} \cap X$. Recall the numbers 36, 12, 4, 0 from the earlier example on Lagrange multipliers. We study these Wasserstein degrees w(X, F).

By the earlier theorem we stated, these numbers are always upper bounded by the polar degree $\mu_i(X)$ where i = dim(X) - codim(F) + 1.

Result for rational normal scroll

Consider the rational normal scroll $S = S(n_1, \dots, n_k)$ in \mathbb{P}^{n-1} whose ideal is generated by the 2×2 minors of $M = \begin{bmatrix} M_{n_1} & M_{n_2} & \cdots & M_{n_k} \end{bmatrix}$ where $M_{n_j} = \begin{bmatrix} x_{j,0} & \cdots & x_{j,n_j-1} \\ x_{j,1} & \cdots & x_{j,n_j} \end{bmatrix}$. One can check that S has dimension k and degree $N = \sum_{i=1}^k n_i$.

If k = 2, we recover the Hirzebruch surface S(a, b).

Theorem (DHMN'24)

Let $S = S(n_1, \dots, n_k) \subseteq \mathbb{P}^{n-1}$ be a rational normal scroll and let $N = \sum_{i=1}^{\kappa} n_i$. The polar degrees of

$$_{j} = \begin{cases} N & \text{if } j = k\mathbf{1} \\ 2(N-1) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}.$$

Result for rational normal scroll

Consider the rational normal scroll $S = S(n_1, \dots, n_k)$ in \mathbb{P}^{n-1} whose ideal is generated by the 2×2 minors of $M = \begin{bmatrix} M_{n_1} & M_{n_2} & \cdots & M_{n_k} \end{bmatrix}$ where $M_{n_j} = \begin{bmatrix} x_{j,0} & \cdots & x_{j,n_j-1} \\ x_{j,1} & \cdots & x_{j,n_j} \end{bmatrix}$. One can check that S has dimension k and degree $N = \sum_{i=1}^k n_i$.

If k = 2, we recover the Hirzebruch surface S(a, b).

Theorem $(DH\underline{M}N'24)$

Let $S = S(n_1, \dots, n_k) \subseteq \mathbb{P}^{n-1}$ be a rational normal scroll and let $N = \sum_{i=1}^{\kappa} n_i$. The polar degrees of

$$_{j} = \begin{cases} N & \text{if } j = k\mathbf{1} \\ 2(N-1) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}.$$

RESULT FOR RATIONAL NORMAL SCROLL

Consider the rational normal scroll $S = S(n_1, \dots, n_k)$ in \mathbb{P}^{n-1} whose ideal is generated by the 2×2 minors of $M = \begin{bmatrix} M_{n_1} & M_{n_2} & \cdots & M_{n_k} \end{bmatrix}$ where $M_{n_j} = \begin{bmatrix} x_{j,0} & \cdots & x_{j,n_j-1} \\ x_{j,1} & \cdots & x_{j,n_j} \end{bmatrix}$. One can check that S has dimension k and degree $N = \sum_{i=1}^k n_i$.

If k = 2, we recover the Hirzebruch surface S(a, b).

THEOREM $(DH\underline{M}N'24)$

Let $S = S(n_1, \dots, n_k) \subseteq \mathbb{P}^{n-1}$ be a rational normal scroll and let $N = \sum_{i=1}^{k} n_i$. The polar degrees of S are

$$u_j = \begin{cases} N & \text{if } j = k\mathbf{1} \\ 2(N-1) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}.$$

Thank You :)

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna No

October 21, 2023

・ロト ・四ト ・ヨト ・ヨト

DEFINITION (CONORMAL VARIETY)

The conormal variery $N_X \subseteq \mathbb{P}^n \times \mathbb{P}^n$ is the Zariski closure of the collection of all pairs $(\boldsymbol{x}, \boldsymbol{h}) \in \mathbb{P}^n \times \mathbb{P}^n$ such that \boldsymbol{x} is a non-singular point in X and \boldsymbol{h} represents a hyperplane tangent to X at \boldsymbol{x} .

Now $H^*(\mathbb{P}^n \times \mathbb{P}^n, \mathbb{Z}) = \mathbb{Z}[s, t] / \langle s^{n+1}, t^{n+1} \rangle$. The class of the conormal variety N_X in this cohomology ring is a binary form of degree $n + 1 = \operatorname{codim}(N_X)$ whose coefficients are nonnegative integers:

$$[N_X] = \sum_{i=1}^n \delta_i(X) s^{n+1-i} t^i$$

Theorem

 $\delta_i(X) = \mu_i(X).$