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An example

Maximize f = x+ y + z subject to g = x4 + y4 + 3z4 − z − 1 = 0

L = (x+ y + z) + λ(x4 + y4 + 3z4 − z − 1).

∂xL = 1 + 4λx3

∂yL = 1 + 4λy3

∂zL = 1 + λ(12z3 − 1)

∂λL = g

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis
tells us that we need to solve an equation of degree 36.
If we add another generic linear constraint, this degree is now 12.
Another generic linear constraint makes the degree 4.
Adding another generic equation means that there’s no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: d1 = 36, d2 = 12, d3 = 4.
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Polar Variety

Imagine a compact ellipsoid X and a point V = vvv. Imagine that your eyes are at vvv. What do you
see? (Picture taken from the book Metric Algebraic Geometry by Breiding, Kohn, Sturmfels.)

Suppose X ⊆ P3 is given by a homogeneous polynomial f of degree d and vvv = (v0 : v1 : v2 : v3) is
the point where your eyes are. It is a curve, name it P (X,vvv), is determined by f and ∂vvvf .

Theorem (Bezout)

Let f1, · · · , fk be general polynomials in n variables of degree d1, · · · , dk respectively. For
I = ⟨f1, · · · , fk⟩ we have dim I = n− k and deg I = d1 · · · dk.

So this P (X,V ) typically has degree d(d− 1).
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Polar degrees

Definition (Polar Variety)

The polar variety of a variety X ⊆ Pn with respect to a projective subspace V ⊆ Pn is

P (X,V ) = {ppp ∈ Reg(X)∖ V : V + ppp intersects X at ppp non-transversally}.

Let i ∈ {0, 1, · · · ,dimX}. If V is generic with dimV = codim(X)− 2 + i, then the degree of
P (X,V ) is independent of V :

µi(X) = degP (X,V ).

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna Nometa Complexity of optimization October 21, 2023



Polar degrees

Definition (Polar Variety)

The polar variety of a variety X ⊆ Pn with respect to a projective subspace V ⊆ Pn is

P (X,V ) = {ppp ∈ Reg(X)∖ V : V + ppp intersects X at ppp non-transversally}.

Let i ∈ {0, 1, · · · ,dimX}. If V is generic with dimV = codim(X)− 2 + i, then the degree of
P (X,V ) is independent of V :

µi(X) = degP (X,V ).
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For a general optimization problem

Given a compact smooth algebraic variety M in Rm, we consider a linear functional ℓ and an
affine-linear space L of codimension r in Rm. It is assumed that the pair (ℓ, L) is in general
position

∗
relative to M. Our aim is to study the following optimization problem:

maximize ℓ over L ∩M.

†

Theorem

The algebraic degree of the above problem is µr(M).

∗
this assumption is very important

†
Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. “Wasserstein

distance to independence models”. In: Journal of symbolic computation 104 (2021), pp. 855–873.
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Wasserstein distance

Let d : [n]× [n] → R≥0 be a metric on [n]. Consider the polytope

Bd = conv

{
1

dij
(eeei − eeej) : i ̸= j

}
⊆

{
111⊤xxx = 0

}︸ ︷︷ ︸
Hn−1

⊆ Rn.

Bd is compact, convex, origin symmetric and has nonzero relative interior on Hn−1. Thus induces a
norm on Hn−1, and thus a metric on any affine hyperplane perpendicular to 111. In particular, given
any two probability vectors µµµ,ννν ∈ ∆n−1, we define their Wasserstein distance based on d to be

Wd(µµµ,ννν) = inf {t > 0 : ννν ∈ µµµ+ tBd} .

We will consider distance of a point µµµ from a statistical model M, namely,

Wd(µµµ,M) = inf
ννν∈M

Wd(µµµ,ννν).
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Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna Nometa Complexity of optimization October 21, 2023



Wasserstein distance

Let d : [n]× [n] → R≥0 be a metric on [n]. Consider the polytope

Bd = conv

{
1

dij
(eeei − eeej) : i ̸= j

}
⊆

{
111⊤xxx = 0

}︸ ︷︷ ︸
Hn−1

⊆ Rn.

Bd is compact, convex, origin symmetric and has nonzero relative interior on Hn−1. Thus induces a
norm on Hn−1, and thus a metric on any affine hyperplane perpendicular to 111. In particular, given
any two probability vectors µµµ,ννν ∈ ∆n−1, we define their Wasserstein distance based on d to be

Wd(µµµ,ννν) = inf {t > 0 : ννν ∈ µµµ+ tBd} .

We will consider distance of a point µµµ from a statistical model M, namely,

Wd(µµµ,M) = inf
ννν∈M

Wd(µµµ,ννν).
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Algebraic Statistics

Consider two random variables X1, X2 ∼ Bernouli(p) and N = X1 +X2. So N =number of heads
on tossing a coin twice independently which has probability p of getting a head. Associate with it
the curve given by (P[N = 0],P[N = 1],P[N = 2]) =

(
p2, 2p(1− p), (1− p)2

)
for p ∈ [0, 1].

To get to one more level of abstraction, we consider models of the form M = ∆n−1 ∩X for some
affine variety X.

As long as µµµ and M are generic with respect to Bd, there will be a unique intersection point, and it
will be in the relative interior of one of the faces F of Bd. We let LF be the linear subspace
generated by the vertices of the face F of B and let ℓF be any linear functional that attains its
maximum over B at F . Then the optimal solution to

minimize ℓF (ννν) subject to ννν ∈ (µµµ+ LF ) ∩M

is the point we are looking for.
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Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna Nometa Complexity of optimization October 21, 2023



Algebraic Statistics

Consider two random variables X1, X2 ∼ Bernouli(p) and N = X1 +X2. So N =number of heads
on tossing a coin twice independently which has probability p of getting a head. Associate with it
the curve given by (P[N = 0],P[N = 1],P[N = 2]) =

(
p2, 2p(1− p), (1− p)2

)
for p ∈ [0, 1].

To get to one more level of abstraction, we consider models of the form M = ∆n−1 ∩X for some
affine variety X.

As long as µµµ and M are generic with respect to Bd, there will be a unique intersection point, and it
will be in the relative interior of one of the faces F of Bd. We let LF be the linear subspace
generated by the vertices of the face F of B and let ℓF be any linear functional that attains its
maximum over B at F . Then the optimal solution to

minimize ℓF (ννν) subject to ννν ∈ (µµµ+ LF ) ∩M

is the point we are looking for.
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Polar degree again

We need to consider this optimization problem for every face F of Bd. Also M = ∆n−1 ∩X.
Recall the numbers 36, 12, 4, 0 from the earlier example on Lagrange multipliers. We study these
Wasserstein degrees w(X,F ).

By the earlier theorem we stated, these numbers are always upper bounded by the polar degree
µi(X) where i = dim(X)− codim(F ) + 1.
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Result for rational normal scroll

Consider the rational normal scroll S = S(n1, · · · , nk) in Pn−1 whose ideal is generated by the 2× 2

minors of M =
[
Mn1 Mn2 · · · Mnk

]
where Mnj

=

[
xj,0 · · · xj,nj−1

xj,1 · · · xj,nj

]
. One can check that S

has dimension k and degree N =
k∑

i=1

ni.

If k = 2, we recover the Hirzebruch surface S(a, b).

Theorem (DHMN′24)

Let S = S(n1, · · · , nk) ⊆ Pn−1 be a rational normal scroll and let N =
k∑

i=1

ni. The polar degrees of

S are

µj =


N if j = k111

2(N − 1) if j = k

0 otherwise

.

Greg DePaul, Serkan Hoşten, Nilava Metya, Ikenna Nometa Complexity of optimization October 21, 2023



Result for rational normal scroll

Consider the rational normal scroll S = S(n1, · · · , nk) in Pn−1 whose ideal is generated by the 2× 2

minors of M =
[
Mn1 Mn2 · · · Mnk

]
where Mnj

=

[
xj,0 · · · xj,nj−1

xj,1 · · · xj,nj

]
. One can check that S

has dimension k and degree N =
k∑

i=1

ni.

If k = 2, we recover the Hirzebruch surface S(a, b).

Theorem (DHMN′24)

Let S = S(n1, · · · , nk) ⊆ Pn−1 be a rational normal scroll and let N =
k∑

i=1

ni. The polar degrees of

S are

µj =


N if j = k111

2(N − 1) if j = k

0 otherwise

.
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Thank You :)
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For algebraic geometers. . .

Definition (Conormal variety)

The conormal variery NX ⊆ Pn × Pn is the Zariski closure of of the collection of all pairs
(xxx,hhh) ∈ Pn × Pn such that xxx is a non-singular point in X and hhh represents a hyperplane tangent to
X at xxx.

Now H∗(Pn × Pn,Z) = Z[s, t]/
〈
sn+1, tn+1

〉
. The class of the conormal variety NX in this

cohomology ring is a binary form of degree n+ 1 = codim(NX) whose coefficients are nonnegative
integers:

[NX ] =

n∑
i=1

δi(X)sn+1−iti

.

Theorem

δi(X) = µi(X).
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