# Complexity of optimization 

Nilava Metya

October 21, 2023
(1) Gröbner Basis

## (2) Lagrange Multipliers

(3) Polar Degree

## (4) Connecting these two

## GOAL

## Solve polynomial systems of equations.

## Example: Sudoku

$$
\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{5} & x_{6} & x_{7} & x_{8} \\
x_{9} & x_{10} & x_{11} & x_{12} \\
x_{13} & x_{14} & x_{15} & x_{16}
\end{array}\right]
$$

We want ${ }^{*}$ to consider the ideal generated by $F_{j}=\prod_{k=1}^{4}\left(x_{j}-k\right)=x_{j}^{4}-10 x_{j}^{3}+35 x_{j}^{2}-50 x_{j}+24$ for each $j=1, \cdots, 16$ and the polynomials. And also the polynomials

$$
G_{i j}=\frac{F_{i}-F_{j}}{x_{i}-x_{j}}=x_{i}^{3}+x_{i}^{2} x_{j}+x_{i} x_{j}^{2}+x_{j}^{3}-10\left(x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}\right)+35\left(x_{i}+x_{j}\right)-50
$$

for $i \neq j$. These polynomials determine the space of solutions to the above sudoku. Additionally we want to input the information given as the starting point of the sudoku.

[^0]
## Example of example: Sudoku

$$
\left[\begin{array}{cccc}
2 & 4 & x_{3} & x_{4} \\
x_{5} & 1 & x_{7} & 2 \\
1 & x_{10} & x_{11} & 4 \\
x_{13} & x_{14} & 1 & 3
\end{array}\right]
$$

I took my ideal to be generated by the relations

$$
\begin{aligned}
\text { row sum } & =10 \\
\text { column sum } & =10 \\
\text { block sum } & =10
\end{aligned}
$$

and the additional things like $x_{1}-2, x_{2}-4, \cdots$.
M2 gives solution

$$
\left[\begin{array}{llll}
2 & 4 & 3 & 1 \\
3 & 1 & 4 & 2 \\
1 & 3 & 2 & 4 \\
4 & 2 & 1 & 3
\end{array}\right]
$$

## Example of example: Sudoku

$$
\left[\begin{array}{cccc}
3 & 4 & x_{3} & x_{4} \\
x_{5} & 1 & x_{7} & 2 \\
1 & x_{10} & x_{11} & 4 \\
x_{13} & x_{14} & 1 & 3
\end{array}\right]
$$

has no solution

But M2 gives solution

$$
\left[\begin{array}{llll}
3 & 4 & 2 & 1 \\
2 & 1 & 5 & 2 \\
1 & 3 & 2 & 4 \\
4 & 2 & 1 & 3
\end{array}\right]
$$

Once I enforce that $F_{j}=0 \forall 1 \leq j \leq 16$, M2 indeed says that there is no solution.

Since I'm a hater of learning by reading, and prefer learning by computing examples ... I shall not define what a (reduced) Gröbner basis is.

$$
\begin{aligned}
5 x+7 y & =1 \\
3 x+10 y & =-3
\end{aligned}
$$

$$
\begin{aligned}
5 x+7 y & =1 \\
3 x+10 y & =-3
\end{aligned}
$$

## GAUSSIAN ELIMINATION

$$
\begin{aligned}
5 x+7 y & =1 & & \times 3 \\
3 x+10 y & =-3 & & \times 5
\end{aligned}
$$

We get: $-29 y=18$. Then plug back $y$.

## A SLIGHT CHANGE IN PERSPECTIVE

Instead of looking at

$$
\begin{aligned}
5 x+7 y & =1 \\
3 x+10 y & =-3
\end{aligned}
$$

## A SLIGHT CHANGE IN PERSPECTIVE

I urge your to look at

$$
\begin{aligned}
5 x+7 y & =1 \\
3 x+10 y & =-3
\end{aligned}
$$

## NON-LINEAR ANALOG OF GAUSSIAN ELIMINATION

$$
\begin{aligned}
& x^{2} y+8=0 \\
& x y^{2}-4=0
\end{aligned}
$$

## NON-LINEAR ANALOG OF GAUSSIAN ELIMINATION

$$
\begin{aligned}
& x^{2} y+8=0 \\
& x y^{2}-4=0
\end{aligned}
$$

## NON-LINEAR ANALOG OF GAUSSIAN ELIMINATION

$$
\begin{array}{ll}
x^{2} y+8=0 & \times y \\
x y^{2}-4=0 & \times x
\end{array}
$$

We get $-2 y=x$. Plugging into the first equation gives $2 x^{3}=8 \Longrightarrow x=\sqrt[3]{16} \Longrightarrow y=-\sqrt[3]{2}$.

M2 gives the reduced Gröbner basis of the ideal $\left\langle x^{2} y+8, x y^{2}-4\right\rangle$ as $\left\{x+2 y, y^{3}+2\right\}$.

## (1) Gröbner Basis

(2) Lagrange Multipliers
(3) Polar Degree

4 Connecting these two

## AN EXAMPLE

Maximize $f=x+y+z$ subject to $g=x^{4}+y^{4}+3 z^{4}-z-1=0$
$\mathcal{L}=(x+y+z)+\lambda\left(x^{4}+y^{4}+3 z^{4}-z-1\right)$.

$$
\begin{aligned}
& \partial_{x} \mathcal{L}=1+4 \lambda x^{3} \\
& \partial_{y} \mathcal{L}=1+4 \lambda y^{3} \\
& \partial_{z} \mathcal{L}=1+\lambda\left(12 z^{3}-1\right) \\
& \partial_{\lambda} \mathcal{L}=g
\end{aligned}
$$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36 .
If we add another generic linear constraint, this degree is now 12 .
Another generic linear constraint makes the degree 4.
Adding another generic equation means that there's no solution, which gives degree 0 .
Define these numbers to be the algebraic degrees: $d_{1}=36, d_{2}=12, d_{3}=4$.

## (1) Gröbner Basis

## (2) Lagrange Multipliers

(3) Polar Degree

## 4 Connecting these Two

## Polar Variety

Imagine a compact ellipsoid $X$ and a point $V=\boldsymbol{v}$. Imagine that your eyes are at $\boldsymbol{v}$. What do you see?

## Picture on blackboard

Suppose $X \subseteq \mathbb{P}^{3}$ is given by a homogeneous polynomial $f$ of degree $d$ and $\boldsymbol{v}=\left(v_{0}: v_{1}: v_{2}: v_{3}\right)$ is the point where your eyes are. What you see is a curve, name it $P(X, \boldsymbol{v})$, is determined by $f$ and $\partial_{\boldsymbol{v}} f$.

## Theorem (Bezout)

Let $f_{1}, \cdots, f_{k}$ be general polynomials in $n$ variables of degree $d_{1}, \cdots, d_{k}$ respectively. For $I=\left\langle f_{1}, \cdots, f_{k}\right\rangle$ we have $\operatorname{dim} I=n-k$ and $\operatorname{deg} I=d_{1} \cdots d_{k}$.

So this $P(X, V)$ typically has degree $d(d-1)$.

## Polar Degrees

## Definition (Polar Variety)

The polar variety of a variety $X \subseteq \mathbb{P}^{n}$ with respect to a projective subspace $V \subseteq \mathbb{P}^{n}$ is

$$
P(X, V)=\overline{\{\boldsymbol{p} \in \operatorname{Reg}(X) \backslash V: V+\boldsymbol{p} \text { intersects } X \text { at } \boldsymbol{p} \text { non-transversally }\}} .
$$

Let $i \in\{0,1, \cdots, \operatorname{dim} X\}$. If $V$ is generic with $\operatorname{dim} V=\operatorname{codim}(X)-2+i$, then the degree of $P(X, V)$ is independent of $V$ :

$$
\mu_{i}(X)=\operatorname{deg} P(X, V) .
$$

## CAREFUL ABOUT TRANSVERSALITY

Transversality depends on the ambient space...


The above intersection is transversal in $\mathbb{R}^{2}$, but non-transversal in $\mathbb{R}^{3}$.

## For algebraic geometers. . .

## Definition (Conormal variety)

The conormal variery $N_{X} \subseteq \mathbb{P}^{n} \times \mathbb{P}^{n}$ is the Zariski closure of of the collection of all pairs $(\boldsymbol{x}, \boldsymbol{h}) \in \mathbb{P}^{n} \times \mathbb{P}^{n}$ such that $\boldsymbol{x}$ is a non-singular point in $X$ and $\boldsymbol{h}$ represents a hyperplane tangent to $X$ at $\boldsymbol{x}$.

Now $H^{*}\left(\mathbb{P}^{n} \times \mathbb{P}^{n}, \mathbb{Z}\right)=\mathbb{Z}[s, t] /\left\langle s^{n+1}, t^{n+1}\right\rangle$. The class of the conormal variety $N_{X}$ in this cohomology ring is a binary form of degree $n+1=\operatorname{codim}\left(N_{X}\right)$ whose coefficients are nonnegative integers:

$$
\left[N_{X}\right]=\sum_{i=1}^{n} \delta_{i}(X) s^{n+1-i} t^{i}
$$

## Theorem

$\delta_{i}(X)=\mu_{i}(X)$.

## (1) Gröbner Basis

## (2) Lagrange Multipliers

(3) Polar Degree
(4) Connecting these two

## For a general optimization problem

Given a compact smooth algebraic variety $\mathcal{M}$ in $\mathbb{R}^{m}$, we consider a linear functional $\ell$ and an affine-linear space $L$ of codimension $r$ in $\mathbb{R}^{m}$. It is assumed that the pair $(\ell, L)$ is in general position ${ }^{\dagger}$ relative to $\mathcal{M}$. Our aim is to study the following optimization problem:

## maximize $\ell$ over $L \cap \mathcal{M}$.

## Theorem

The algebraic degree of the above problem is $\mu_{r}(\mathcal{M})$.

[^1]
[^0]:    * Jesús Gago-Vargas, María Isabel Hartillo-Hermoso, Jorge Martín-Morales, and José María Ucha-Enríquez. "Sudokus and Gröbner Bases: Not Only a Divertimento". In: Computer Algebra in Scientific Computing. 2006. URL: https://api.semanticscholar.org/CorpusID:11562585.

[^1]:    ${ }^{\dagger}$ this assumption is very important
    ${ }^{\ddagger}$ Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. "Wasserstein distance to independence models". In: Journal of symbolic computation 104 (2021), pp. 855-873.

