COMPLEXITY OF OPTIMIZATION

Nilava Metya

October 21, 2023

2 LAGRANGE MULTIPLIERS

B POLAR DEGREE

CONNECTING THESE TWO

Solve polynomial systems of equations.

x_1	x_2	x_3	x_4
x_5	x_6	x_7	x_8
x_9	x_{10}	x_{11}	x_{12}
x_{13}	x_{14}	x_{15}	x_{16}

We want^{*} to consider the ideal generated by $F_j = \prod_{k=1}^4 (x_j - k) = x_j^4 - 10x_j^3 + 35x_j^2 - 50x_j + 24$ for each $j = 1, \dots, 16$ and the polynomials. And also the polynomials

$$G_{ij} = \frac{F_i - F_j}{x_i - x_j} = x_i^3 + x_i^2 x_j + x_i x_j^2 + x_j^3 - 10(x_i^2 + x_i x_j + x_j^2) + 35(x_i + x_j) - 50$$

for $i \neq j$. These polynomials determine the space of solutions to the above sudoku. Additionally we want to input the information given as the starting point of the sudoku.

^{*}Jesús Gago-Vargas, María Isabel Hartillo-Hermoso, Jorge Martín-Morales, and José María Ucha-Enríquez. "Sudokus and Gröbner Bases: Not Only a Divertimento". In: *Computer Algebra in Scientific Computing*. 2006. URL: https://api.semanticscholar.org/CorpusID:11562585.

Example of example: Sudoku

2	4	x_3	x_4
x_5	1	x_7	2
1	x_{10}	x_{11}	4
x_{13}	x_{14}	1	3

I took my ideal to be generated by the relations

row sum = 10column sum = 10block sum = 10

and the additional things like $x_1 - 2, x_2 - 4, \cdots$. M2 gives solution

2	4	3	1
3	1	4	2
1	3	2	4
4	2	1	3

Example of example: Sudoku

3	4	x_3	x_4
x_5	1	x_7	2
1	x_{10}	x_{11}	4
x_{13}	x_{14}	1	3

has no solution

But M2 gives solution

$$\begin{bmatrix} 3 & 4 & 2 & 1 \\ 2 & 1 & 5 & 2 \\ 1 & 3 & 2 & 4 \\ 4 & 2 & 1 & 3 \end{bmatrix}$$

Once I enforce that $F_j = 0 \forall 1 \leq j \leq 16$, M2 indeed says that there is no solution.

Since I'm a hater of learning by reading, and prefer learning by computing examples \dots I shall not define what a (reduced) Gröbner basis is.

GAUSSIAN ELIMINATION

$$5x + 7y = 1$$
$$3x + 10y = -3$$

$$5x + 7y = 1$$
$$3x + 10y = -3$$

We get: -29y = 18. Then plug back y.

A SLIGHT CHANGE IN PERSPECTIVE

Instead of looking at

$$5x + 7y = 1$$
$$3x + 10y = -3$$

A SLIGHT CHANGE IN PERSPECTIVE

I urge your to look at

$$5x + 7y = 1$$
$$3x + 10y = -3$$

NON-LINEAR ANALOG OF GAUSSIAN ELIMINATION

$$x^2y + 8 = 0$$
$$xy^2 - 4 = 0$$

NON-LINEAR ANALOG OF GAUSSIAN ELIMINATION

$$x^2y + 8 = 0$$
$$xy^2 - 4 = 0$$

NON-LINEAR ANALOG OF GAUSSIAN ELIMINATION

$$x^2y + 8 = 0 \qquad \qquad \times y$$
$$xy^2 - 4 = 0 \qquad \qquad \times x$$

We get -2y = x. Plugging into the first equation gives $2x^3 = 8 \implies x = \sqrt[3]{16} \implies y = -\sqrt[3]{2}$.

M2 gives the reduced Gröbner basis of the ideal $\langle x^2y + 8, xy^2 - 4 \rangle$ as $\{x + 2y, y^3 + 2\}$.

1 Gröbner Basis

2 LAGRANGE MULTIPLIERS

B POLAR DEGREE

CONNECTING THESE TWO

AN EXAMPLE

Maximize f = x + y + z $\mathcal{L} = (x + y + z) + \lambda(x^4 + y^4 + 3z^4 - z - 1).$ $\partial_x \mathcal{L} = 1 + 4\lambda x^3$ $\partial_y \mathcal{L} = 1 + 4\lambda y^3$ $\partial_z \mathcal{L} = 1 + \lambda(12z^3 - 1)$ $\partial_\lambda \mathcal{L} = q$

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis tells us that we need to solve an equation of degree 36.

If we add another **generic** linear constraint, this degree is now 12.

Another **generic** linear constraint makes the degree 4.

Adding another **generic** equation means that there's no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: $d_1 = 36, d_2 = 12, d_3 = 4$.

O GRÖBNER BASIS

2 Lagrange Multipliers

3 Polar Degree

CONNECTING THESE TWO

Imagine a compact ellipsoid X and a point $V = \boldsymbol{v}$. Imagine that your eyes are at \boldsymbol{v} . What do you see?

Picture on blackboard

Suppose $X \subseteq \mathbb{P}^3$ is given by a homogeneous polynomial f of degree d and $\boldsymbol{v} = (v_0 : v_1 : v_2 : v_3)$ is the point where your eyes are. What you see is a curve, name it $P(X, \boldsymbol{v})$, is determined by f and $\partial_{\boldsymbol{v}} f$.

THEOREM (BEZOUT)

Let f_1, \dots, f_k be general polynomials in n variables of degree d_1, \dots, d_k respectively. For $I = \langle f_1, \dots, f_k \rangle$ we have dim I = n - k and deg $I = d_1 \dots d_k$.

So this P(X, V) typically has degree d(d-1).

DEFINITION (POLAR VARIETY)

The polar variety of a variety $X \subseteq \mathbb{P}^n$ with respect to a projective subspace $V \subseteq \mathbb{P}^n$ is

 $P(X,V) = \overline{\{\boldsymbol{p} \in \operatorname{Reg}(X) \setminus V : V + \boldsymbol{p} \text{ intersects } X \text{ at } \boldsymbol{p} \text{ non-transversally}\}}.$

Let $i \in \{0, 1, \dots, \dim X\}$. If V is generic with $\dim V = \operatorname{codim}(X) - 2 + i$, then the degree of P(X, V) is independent of V:

 $\mu_i(X) = \deg P(X, V).$

CAREFUL ABOUT TRANSVERSALITY

Transversality depends on the ambient space...

The above intersection is transversal in \mathbb{R}^2 , but non-transversal in \mathbb{R}^3 .

DEFINITION (CONORMAL VARIETY)

The conormal variery $N_X \subseteq \mathbb{P}^n \times \mathbb{P}^n$ is the Zariski closure of the collection of all pairs $(\boldsymbol{x}, \boldsymbol{h}) \in \mathbb{P}^n \times \mathbb{P}^n$ such that \boldsymbol{x} is a non-singular point in X and \boldsymbol{h} represents a hyperplane tangent to X at \boldsymbol{x} .

Now $H^*(\mathbb{P}^n \times \mathbb{P}^n, \mathbb{Z}) = \mathbb{Z}[s, t] / \langle s^{n+1}, t^{n+1} \rangle$. The class of the conormal variety N_X in this cohomology ring is a binary form of degree $n + 1 = \operatorname{codim}(N_X)$ whose coefficients are nonnegative integers:

$$[N_X] = \sum_{i=1}^n \delta_i(X) s^{n+1-i} t^i$$

THEOREM

 $\delta_i(X) = \mu_i(X).$

1 Gröbner Basis

2 Lagrange Multipliers

B POLAR DEGREE

4 Connecting these two

FOR A GENERAL OPTIMIZATION PROBLEM

Given a compact smooth algebraic variety \mathcal{M} in \mathbb{R}^m , we consider a linear functional ℓ and an affine-linear space L of codimension r in \mathbb{R}^m . It is assumed that the pair (ℓ, L) is in general position[†] relative to \mathcal{M} . Our aim is to study the following optimization problem:

maximize ℓ over $L \cap \mathcal{M}$.

Theorem

The algebraic degree of the above problem is $\mu_r(\mathcal{M})$.

NILAVA METYA

COMPLEXITY OF OPTIMIZATION

[†]this assumption is very important

[†]Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. "Wasserstein distance to independence models". In: *Journal of symbolic computation* 104 (2021), pp. 855–873.