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Goal

Solve polynomial systems of equations.
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Example: Sudoku


x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16


We want

∗
to consider the ideal generated by Fj =

∏4
k=1(xj − k) = x4

j − 10x3
j + 35x2

j − 50xj + 24
for each j = 1, · · · , 16 and the polynomials. And also the polynomials

Gij =
Fi − Fj

xi − xj
= x3

i + x2
ixj + xix

2
j + x3

j − 10(x2
i + xixj + x2

j ) + 35(xi + xj)− 50

for i ̸= j. These polynomials determine the space of solutions to the above sudoku. Additionally we
want to input the information given as the starting point of the sudoku.

∗
Jesús Gago-Vargas, Maŕıa Isabel Hartillo-Hermoso, Jorge Mart́ın-Morales, and José Maŕıa Ucha-Enŕıquez.

“Sudokus and Gröbner Bases: Not Only a Divertimento”. In: Computer Algebra in Scientific Computing. 2006.
url: https://api.semanticscholar.org/CorpusID:11562585.
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Example of example: Sudoku


2 4 x3 x4

x5 1 x7 2
1 x10 x11 4
x13 x14 1 3


I took my ideal to be generated by the relations

row sum = 10

column sum = 10

block sum = 10

and the additional things like x1 − 2, x2 − 4, · · · .
M2 gives solution 

2 4 3 1
3 1 4 2
1 3 2 4
4 2 1 3


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Example of example: Sudoku


3 4 x3 x4

x5 1 x7 2
1 x10 x11 4
x13 x14 1 3


has no solution

But M2 gives solution 
3 4 2 1
2 1 5 2
1 3 2 4
4 2 1 3


Once I enforce that Fj = 0∀1 ≤ j ≤ 16, M2 indeed says that there is no solution.

Nilava Metya Complexity of optimization October 21, 2023



Since I’m a hater of learning by reading, and prefer learning by computing examples . . .

I shall not define what a (reduced) Gröbner basis is.
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Gaussian elimination

5x+ 7y = 1

3x+ 10y = −3
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Gaussian elimination

5x+ 7y = 1

3x+ 10y = −3
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Gaussian elimination

5x+ 7y = 1 × 3

3x+ 10y = −3 × 5

We get: −29y = 18. Then plug back y.
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A slight change in perspective

Instead of looking at

5x+ 7y = 1

3x+ 10y = −3
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A slight change in perspective

I urge your to look at

5x+ 7y = 1

3x+ 10y = −3
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Non-linear analog of Gaussian elimination

x2y + 8 = 0

xy2 − 4 = 0
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Non-linear analog of Gaussian elimination

x2y + 8 = 0

xy2 − 4 = 0
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Non-linear analog of Gaussian elimination

x2y + 8 = 0 × y

xy2 − 4 = 0 × x

We get −2y = x. Plugging into the first equation gives 2x3 = 8 =⇒ x = 3
√
16 =⇒ y = − 3

√
2.

M2 gives the reduced Gröbner basis of the ideal
〈
x2y + 8, xy2 − 4

〉
as

{
x+ 2y, y3 + 2

}
.
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An example

Maximize f = x+ y + z subject to g = x4 + y4 + 3z4 − z − 1 = 0

L = (x+ y + z) + λ(x4 + y4 + 3z4 − z − 1).

∂xL = 1 + 4λx3

∂yL = 1 + 4λy3

∂zL = 1 + λ(12z3 − 1)

∂λL = g

Trying to define an ideal in SageMath given by the above generators and finding a Gröbner basis
tells us that we need to solve an equation of degree 36.
If we add another generic linear constraint, this degree is now 12.
Another generic linear constraint makes the degree 4.
Adding another generic equation means that there’s no solution, which gives degree 0.

Define these numbers to be the algebraic degrees: d1 = 36, d2 = 12, d3 = 4.
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Polar Variety

Imagine a compact ellipsoid X and a point V = vvv. Imagine that your eyes are at vvv. What do you
see?

Picture on blackboard

Suppose X ⊆ P3 is given by a homogeneous polynomial f of degree d and vvv = (v0 : v1 : v2 : v3) is
the point where your eyes are. What you see is a curve, name it P (X,vvv), is determined by f and
∂vvvf .

Theorem (Bezout)

Let f1, · · · , fk be general polynomials in n variables of degree d1, · · · , dk respectively. For
I = ⟨f1, · · · , fk⟩ we have dim I = n− k and deg I = d1 · · · dk.

So this P (X,V ) typically has degree d(d− 1).
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Polar degrees

Definition (Polar Variety)

The polar variety of a variety X ⊆ Pn with respect to a projective subspace V ⊆ Pn is

P (X,V ) = {ppp ∈ Reg(X)∖ V : V + ppp intersects X at ppp non-transversally}.

Let i ∈ {0, 1, · · · ,dimX}. If V is generic with dimV = codim(X)− 2 + i, then the degree of
P (X,V ) is independent of V :

µi(X) = degP (X,V ).
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Careful about transversality

Transversality depends on the ambient space. . .

The above intersection is transversal in R2, but non-transversal in R3.
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For algebraic geometers. . .

Definition (Conormal variety)

The conormal variery NX ⊆ Pn × Pn is the Zariski closure of of the collection of all pairs
(xxx,hhh) ∈ Pn × Pn such that xxx is a non-singular point in X and hhh represents a hyperplane tangent to
X at xxx.

Now H∗(Pn × Pn,Z) = Z[s, t]/
〈
sn+1, tn+1

〉
. The class of the conormal variety NX in this

cohomology ring is a binary form of degree n+ 1 = codim(NX) whose coefficients are nonnegative
integers:

[NX ] =

n∑
i=1

δi(X)sn+1−iti

.

Theorem

δi(X) = µi(X).
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For a general optimization problem

Given a compact smooth algebraic variety M in Rm, we consider a linear functional ℓ and an
affine-linear space L of codimension r in Rm. It is assumed that the pair (ℓ, L) is in general

position
†
relative to M. Our aim is to study the following optimization problem:

maximize ℓ over L ∩M.

‡

Theorem

The algebraic degree of the above problem is µr(M).

†
this assumption is very important

‡
Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. “Wasserstein

distance to independence models”. In: Journal of symbolic computation 104 (2021), pp. 855–873.
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