PRINCIPAL COMPONENTS ALONG QUIVER REPRESENTATIONS

Nilava Metya

Rutgers University

December 6, 2023

TABLE OF CONTENTS

PRINCIPAL COMPONENT ANALYSIS

- **2** QUIVER REPRESENTATIONS
- **3** More motivation

Computing sections: focus on strongly connected quivers first

6 Acyclic reduction: removing cycles

6 The Arboreal replacement

Given data
$$D = \{ \boldsymbol{y}_1, \cdots, \boldsymbol{y}_m \} \subseteq \mathbb{R}^n$$
 with $\frac{1}{m} \sum \boldsymbol{y}_i = \boldsymbol{0}$, find

- direction of maximum variance.
- **2** direction of maximum r-variances (that is, directions \boldsymbol{x}_i such that total variance along $\mathbb{R} \langle \boldsymbol{x}_1, \cdots, \boldsymbol{x}_r \rangle$ is maximized).

Solution for 1 direction

The data along direction \boldsymbol{x} (such that $||\boldsymbol{x}|| = 1$) is $\langle D, \boldsymbol{x} \rangle = \{\langle \boldsymbol{y}_i, \boldsymbol{x} \rangle\}_{i=1}^m$. Mean of this data is 0. So, variance of this projected data is $\frac{1}{m} \sum \langle \boldsymbol{y}_i, \boldsymbol{x} \rangle^2 = \sum \boldsymbol{x}^\top \left(\frac{1}{m} \boldsymbol{y}_i \boldsymbol{y}_i^\top\right) \boldsymbol{x} = \boldsymbol{x}^\top \underbrace{\sum \left(\frac{1}{m} \boldsymbol{y}_i \boldsymbol{y}_i^\top\right)}_{S} \boldsymbol{x}$. Thus our

problem becomes

$$\max \boldsymbol{x}^{\top} S \boldsymbol{x}$$

s.t.
$$\begin{cases} \boldsymbol{x}^{\top} \boldsymbol{x} = 1 \\ \boldsymbol{x} \in \mathbb{R}^n \end{cases}$$

The optimal \boldsymbol{x} is an eigenvector corresponding to the highest eigenvalue of S.

Look at the Rayleigh quotient

$$R_M(\boldsymbol{v}) = rac{\boldsymbol{v}^{ op} M \boldsymbol{v}}{\boldsymbol{v}^{ op} \boldsymbol{v}}.$$

THEOREM (RAYLEIGH QUOTIENT THEOREM)

If M is Hermitian, $\max R_M(\boldsymbol{v}) = \lambda_{max}$.

Solution for r directions

Note that $S = \frac{1}{m} \sum \boldsymbol{y}_i \boldsymbol{y}_i^{\top}$ is symmetric. Assume r distinct eigenvalues $\lambda_1 > \cdots > \lambda_r$. $\boldsymbol{x}_1 \qquad \cdots \qquad \boldsymbol{x}_r$.

Highest variance is along \boldsymbol{x}_1 .

Second highest variance obtained by restricting S to $\langle \boldsymbol{x}_1 \rangle^{\perp}$ — so direction is \boldsymbol{x}_2 . And so on...

This is simply the solution to the optimization problem

$$\max \operatorname{tr} \left(X^{\top} S X \right)$$

s.t.
$$\begin{cases} X^{\top} X = \mathbf{1}_r \\ X \in M_{n \times r} \end{cases}$$

PRINCIPAL COMPONENT ANALYSIS along A SUBSPACE

Say we have a subspace $V \subseteq \mathbb{R}^n$ with an orthogonal complement U and $\boldsymbol{u}_1, \cdots, \boldsymbol{u}_k$ is an orthonormal basis of U. So $W = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_k \end{bmatrix} : \mathbb{R}^k \to \mathbb{R}^n$ has image U. Then $V = \{ \boldsymbol{x} \in \mathbb{R}^n : W^\top \boldsymbol{x} = \boldsymbol{0} \}.$

Then the optimization problem along V is

$$\max \operatorname{tr} \left(X^{\top} S X \right)$$

s.t.
$$\begin{cases} X^{\top} X = \mathbf{1}_r \\ W^{\top} X = \mathbf{0} \\ X \in M_{n \times r} \end{cases}$$

implicit

ALTERNATE PERSPECTIVES

If $F : \mathbb{R}^d \hookrightarrow \mathbb{R}^n$ is an embedding for V, that is, F is full rank and $\Im(F) = V$.

The X in the above optimization problem would then look like X = FY for some $Y \in M_{d \times r}$. Then the optimization problem along V is

$$\max \operatorname{tr} \left(Y^{\top} F^{\top} S F Y \right)$$
 parameterized
s.t.
$$\begin{cases} Y^{\top} F^{\top} F Y = \mathbf{1}_r \\ Y \in M_{d \times r} \end{cases}$$

Also now notice that $B = FF^{\top} : \mathbb{R}^n \to \mathbb{R}^n$ is a projection onto V. Then X can be replaced with X = BZ for $Z \in M_{n \times r}$. Then the optimization problem *along* V is

> $\max \operatorname{tr} \left(Z^{\top}BSBZ \right) \qquad \text{projected}$ s.t. $\begin{cases} Z^{\top}B^{2}Z = \mathbf{1}_{r} \\ Z \in M_{n \times r} \end{cases}$

TABLE OF CONTENTS

1 Principal Component Analysis

- **2** Quiver Representations
- **3** More motivation

Computing Sections: Focus on Strongly Connected Quivers First

6 Acyclic reduction: removing cycles

6 The Arboreal replacement

DEFINITION (QUIVER)

A quiver is a (finite) directed graph.

DEFINITION (QUIVER REPRESENTATION)

A representation \mathbf{A}_{\bullet} of a quiver Q = (V, E) is an assignment of vector spaces \mathbf{A}_{v} to each vertex $v \in V$ and linear maps $\mathbf{A}_{e} : \mathbf{A}_{u} \to \mathbf{A}_{v}$ to each edge $e : u \to v$.

$$\mathbb{R}^2 \xrightarrow[B]{A} \mathbb{R}^3$$

where
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 1 & 0 & 7 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 1 & 7 \end{bmatrix}$$
.

Remark: This can be viewed as a representation of an algebra (the path algebra of the quiver Q) — the representation is $\text{Tot}(\mathbf{A}_{\bullet}) = \bigoplus_{v \in V} \mathbf{A}_{v}$.

WANT PC ALONG QUIVER REPRESENTATIONS

Say we are given data $D = \{ \boldsymbol{y}_1, \cdots, \boldsymbol{y}_m \} \subseteq \mathbb{R}^n \xleftarrow{\sim}{\varphi} \operatorname{Tot}(\boldsymbol{A}_{\bullet})$. Where \boldsymbol{A}_{\bullet} is a representation of Q.

PCA along the quiver representation doesn't make sense if it is just normal PCA.

Want: the vector (for principal directions) to respect the representation. That is, if $\boldsymbol{\gamma} = (\gamma_v)_{v \in V} \in \bigoplus_{v \in V} \boldsymbol{A}_v$ is a direction with $||\varphi(\boldsymbol{\gamma})|| = 1$, then we'd like $\boldsymbol{A}_e(\gamma_x) = \gamma_y$ for all edges $e: x \to y$ in Q. So we are interested in the **subspace**

$$\Gamma(Q, \boldsymbol{A}_{\bullet}) = \{(\gamma_v)_{v \in V} \in \operatorname{Tot}(\boldsymbol{A}_{\bullet}) : \boldsymbol{A}_e(\gamma_x) = \gamma_y \text{ for all edges } e : x \to y\}.$$

TABLE OF CONTENTS

D Principal Component Analysis

2 QUIVER REPRESENTATIONS

3 More motivation

OCOMPUTING SECTIONS: FOCUS ON STRONGLY CONNECTED QUIVERS FIRST

6 Acyclic reduction: removing cycles

6 The Arboreal replacement

	$40^{\circ}\mathrm{C}$			$60^{\circ}\mathrm{C}$			$80^{\circ}\mathrm{C}$			$100^{\circ}\mathrm{C}$			$120^{\circ}\mathrm{C}$		
	p_1	p_2	p_3	p_1	p_2	p_3	p_1	p_2	p_3	p_1	p_2	p_3	p_1	p_2	p_3
\boldsymbol{x}_1															
\pmb{x}_2															
x_3															
\pmb{x}_4															
x_5															
x_6															
$oldsymbol{x}_7$															
$oldsymbol{x}_8$															
$oldsymbol{x}_9$															
$oldsymbol{x}_{10}$															

$11 \times 3 \times 5$ contingency table

 p_i are the variables being measured. Each \boldsymbol{x}_i is a sample measurement of p_1, p_2, p_3 . Each block is the set of measurements at a different temperature.

IF WATER...

Parameters different for liquid vs. gas. + different behaviour at boiling point. Maybe...

		$40^{\circ}\mathrm{C}$	ļ		$60^{\circ}\mathrm{C}$	ļ		80°C		$100^{\circ}\mathrm{C}$	$120^{\circ}\mathrm{C}$	
	p_1	p_2	p_3	p_1	p_2	p_3	p_1	p_2	p_3	p_2	p_2	p_3
x_1												
x_2												
x_3												
x_4												
x_5												
x_6												
x_7												
x_8												
$oldsymbol{x}_9$												
x_{10}												

IF WATER...

Parameters different for liquid vs. gas. + different behaviour at boiling point. Maybe...

		$40^{\circ}\mathrm{C}$		$60^{\circ}\mathrm{C}$				80°C		$100^{\circ}\mathrm{C}$	$120^{\circ}\mathrm{C}$	
	p_1	p_2	p_3	p_1	p_2	p_3	p_1	p_2	p_3	p_2	p_2	p_3
x_1												
x_2												
\boldsymbol{x}_3												
x_4												
x_5												
$oldsymbol{x}_{6}$												
x_7												
x_8												
$oldsymbol{x}_9$												
x_{10}												
		\mathbb{R}^3		\mathbb{R}^3			\mathbb{R}^3			R	\mathbb{R}	2

IN GENERAL TABLE COULD LOOK LIKE...

WHY WOULD I GROUP RANDOM DATA? (RHETORICAL)

So maybe there's some relation

Restrict to the case when these maps are linear.

\mathbb{R}^n is just for each row

But the data really look like

Linear $T: U \to W$ induces linear $T \otimes \mathbf{1}_V: U \otimes V \to W \otimes V$.

WANT ...

Look at a simpler example

Want a rank 1 approximation of the data in this quiver representation.

WANT ...

Look at a simpler example

Want a rank 1 approximation of this **quiver representation**. Should respect the representation.

Could we have started elsewhere?

Stuck!!!

- $\Gamma(Q, \mathbf{A}_{\bullet})$ is precisely what we want.
- Strongly connected components and minimal vertices are important.
- Arborescences are good: If Q is an arborescence with root ρ , then $\Gamma(Q, \mathbf{A}_{\bullet}) \cong \mathbf{A}_{\rho}$.
- If there are two paths p, q from u to v, then γ_u is good iff $\gamma_u \in \ker(\mathbf{A}_p \mathbf{A}_q)$.

TABLE OF CONTENTS

D Principal Component Analysis

- **2** Quiver Representations
- **3** More motivation

Computing Sections: Focus on Strongly Connected Quivers First

6 Acyclic reduction: removing cycles

6 The Arboreal replacement

DEFINITION

An ear decomposition Q_{\bullet} of Q is an ordered sequence of $c \ge 1$ subquivers $\{Q_i = (s_i, t_i : E_i \to V_i) | i \in [c]\}$ of Q subject to the following axioms:

- the edge sets E_i partition E;
- the quiver Q_1 is either a single vertex or a cycle, while Q_i for each i > 1 is a (possibly cyclic) path in Q;
- for each i > 1, the intersection of V_i with the union $\bigcup_{j < i} V_j$ equals $\{s(Q_i), t(Q_i)\}$.

Theorem

A quiver with at least two vertices is strongly connected if and only if it has an ear decomposition.

EXAMPLES

NILAVA METYA (RUTGERS UNIVERSITY)

ARBORESCENCE FROM SC QUIVER (REPRESENTAITON)

Fix an origin ρ for Q_1 .

Remove terminal edges to get T.

We get an arboroscence. For each terminal edge ϵ define $\Delta_{\epsilon} : A_{\rho} \to A_{t_{\epsilon}}$ by $\Delta_{\epsilon} = A_{p(t_{\epsilon})} - A_{\epsilon} \circ A_{p(s_{\epsilon})}$.

For the orange edge:

The root is therefore

$$(\boldsymbol{A}|_T)_{\rho} \cong \bigcap_{\epsilon \text{ terminal}} \ker \Delta_{\epsilon} \eqqcolon K$$

LEMMA $\Gamma(Q, \boldsymbol{A}_{\bullet}) \cong (\boldsymbol{A}_{\bullet}|_{T})_{\rho} \cong \bigcap_{\epsilon \ terminal} \ker \Delta_{\epsilon}$

What if there's something more than strongly connected?

Want to find a representation of the new quiver (arborescence) whose space of sections is unchanged.

TABLE OF CONTENTS

- **D** Principal Component Analysis
- **2** Quiver Representations
- **3** More motivation
- OCOMPUTING SECTIONS: FOCUS ON STRONGLY CONNECTED QUIVERS FIRST
- **6** Acyclic reduction: removing cycles
- 6 The Arboreal replacement

IN THE QUIVER

Cycles occur in strongly connected parts. So we

- Identify each maximally strongly connected component of the quiver, and
- Get an arborescence from there by removing terminal edges (keep track of the roots).

IN THE REPRESENTATION

For the • in the (2, 2) position, what if after pushing a vector to (2, 3) (via (2, 1)), the vector doesn't fall into K'? So, replace it with $A_{p(\bullet \to K')}^{-1}(K')$. In fact, it needs to be replaced with the intersection of all paths • $\to \rho(R)$ for all strongly connected components R, where $\rho(R)$ is the root of R. For the • in the (2, 1) position, replace it with intersection of all $A_{p(\bullet \to q(R))}^{-1}(K(R))$.

TABLE OF CONTENTS

- **D** Principal Component Analysis
- **2** Quiver Representations
- **3** More motivation
- OCOMPUTING SECTIONS: FOCUS ON STRONGLY CONNECTED QUIVERS FIRST
- 6 Acyclic reduction: removing cycles
- 6 The Arboreal Replacement

Start with

Do an acyclic reduction

Identify minimal vertices

Augment the quiver to have a single source ρ . Connect a new vertex to minimal vertices.

NOW FLOW THROUGH...

 $V_6 \leq$

 T_{0}

 V_{10}

FOR REPRESENTATIONS...

Replace each A_v with the equalizer Φ_v of $\{A_e \varphi_{s(e)} : \Phi'_v \to A_v | e \in E_{in}(v)\}$ with a flow map $\varphi_v : \Phi_v \to A_v$ given by the restriction of $A_e \varphi_{s(e)}$.

Lemma

$$\Gamma(Q, \mathbf{A}_{\bullet}) \cong \bigcap_{v \in V_{max}} \Phi_v \eqqcolon Q \Phi(\mathbf{A}_{\bullet}).$$

Lemma

If $T^+ \subseteq Q^+$ is a spanning arborescence (found by BFS) of the augmented quiver with root ρ , then an arboreal replacement of A_{\bullet} is the representation given by A_{\bullet}^+ of T^+ given by

$$(\mathbf{A}_{\bullet}^{+})_{v} = \begin{cases} \Phi(A_{\bullet}) & \text{if } v = \rho \\ \mathbf{A}_{v} & \text{otherwise} \end{cases} \text{ and } (\mathbf{A}_{\bullet}^{+})_{e} = \begin{cases} A_{e}|_{\Phi(A_{\bullet})} & \text{if } s(e) = \rho \\ \mathbf{A}_{e} & \text{otherwise} \end{cases}.$$

Thankyou!