Principal Components along Quiver representations

Nilava Metya

Rutgers University

December 6, 2023

Table of Contents

(1) Principal Component Analysis
(2) Quiver Representations
(3) More motivation
(4) Computing sections: focus on Strongly connected Quivers first

55 ACYCLIC REDUCTION: REMOVING CYCLES
(6) The Arboreal Replacement

The Problem Setting for PCA

Given data $D=\left\{\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{m}\right\} \subseteq \mathbb{R}^{n}$ with $\frac{1}{m} \sum \boldsymbol{y}_{i}=\mathbf{0}$, find
(1) direction of maximum variance.
(2) direction of maximum r-variances (that is, directions \boldsymbol{x}_{i} such that total variance along $\mathbb{R}\left\langle\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{r}\right\rangle$ is maximized $)$.

Solution for 1 direction

The data along direction \boldsymbol{x} (such that $\|\boldsymbol{x}\|=1$) is $\langle D, \boldsymbol{x}\rangle=\left\{\left\langle\boldsymbol{y}_{i}, \boldsymbol{x}\right\rangle\right\}_{i=1}^{m}$. Mean of this data is 0 . So, variance of this projected data is $\frac{1}{m} \sum\left\langle\boldsymbol{y}_{i}, \boldsymbol{x}\right\rangle^{2}=\sum \boldsymbol{x}^{\top}\left(\frac{1}{m} \boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{y}_{i}^{\top}\right) \boldsymbol{x}=\boldsymbol{x}^{\top} \underbrace{\sum\left(\frac{1}{m} \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{\top}\right)}_{S} \boldsymbol{x}$. Thus our problem becomes

$$
\begin{aligned}
& \max \boldsymbol{x}^{\top} S \boldsymbol{x} \\
& \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{x}^{\top} \boldsymbol{x}=1 \\
\boldsymbol{x} \in \mathbb{R}^{n}
\end{array}\right.
\end{aligned}
$$

The optimal \boldsymbol{x} is an eigenvector corresponding to the highest eigenvalue of S.

MAIN THEOREM TO USE

Look at the Rayleigh quotient

$$
R_{M}(\boldsymbol{v})=\frac{\boldsymbol{v}^{\top} M \boldsymbol{v}}{\boldsymbol{v}^{\top} \boldsymbol{v}}
$$

THEOREM (RAYLEIGH QUOTIENT THEOREM)
If M is Hermitian, $\max R_{M}(\boldsymbol{v})=\lambda_{\text {max }}$.

Solution for r DIRECTIONS

Note that $S=\frac{1}{m} \sum \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{\top}$ is symmetric. Assume r distinct eigenvalues $\lambda_{1}>\cdots>\lambda_{r}$. $\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{r}$.
Highest variance is along \boldsymbol{x}_{1}.
Second highest variance obtained by restricting S to $\left\langle\boldsymbol{x}_{1}\right\rangle^{\perp}$ - so direction is \boldsymbol{x}_{2}. And so on....

This is simply the solution to the optimization problem

$$
\begin{aligned}
& \max \operatorname{tr}\left(X^{\top} S X\right) \\
& \text { s.t. }\left\{\begin{array}{l}
X^{\top} X=\mathbf{1}_{r} \\
X \in M_{n \times r}
\end{array}\right.
\end{aligned}
$$

Principal Component Analysis along A Subspace

Say we have a subspace $V \subseteq \mathbb{R}^{n}$ with an orthogonal complement U and $\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{k}$ is an orthonormal basis of U. So $W=\left[\begin{array}{lll}\boldsymbol{u}_{1} & \cdots & \boldsymbol{u}_{k}\end{array}\right]: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ has image U. Then $V=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: W^{\top} \boldsymbol{x}=\mathbf{0}\right\}$.

Then the optimization problem along V is

$$
\begin{array}{ll}
\max & \operatorname{tr}\left(X^{\top} S X\right) \\
\text { s.t. }\left\{\begin{array}{l}
X^{\top} X=\mathbf{1}_{r} \\
W^{\top} X=\mathbf{0} \\
X \in M_{n \times r}
\end{array}\right.
\end{array}
$$

implicit

ALTERNATE PERSPECTIVES

If $F: \mathbb{R}^{d} \hookrightarrow \mathbb{R}^{n}$ is an embedding for V, that is, F is full rank and $\Im(F)=V$.

The X in the above optimization problem would then look like $X=F Y$ for some $Y \in M_{d \times r}$. Then the optimization problem along V is

$$
\begin{aligned}
& \max \operatorname{tr}\left(Y^{\top} F^{\top} S F Y\right) \quad \text { parameterized } \\
& \text { s.t. }\left\{\begin{array}{l}
Y^{\top} F^{\top} F Y=\mathbf{1}_{r} \\
Y \in M_{d \times r}
\end{array}\right.
\end{aligned}
$$

Alsn now notice that $B=F F^{\top}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a projection onto V. Then X can be replaced with $X=B Z$ for $Z \in M_{n \times r}$.
Then the optimization problem along V is

$$
\begin{array}{ll}
\max & \operatorname{tr}\left(Z^{\top} B S B Z\right) \\
\text { s.t. }\left\{\begin{array}{l}
Z^{\top} B^{2} Z=\mathbf{1}_{r} \\
Z \in M_{n \times r}
\end{array}\right. & \text { projected }
\end{array}
$$

Table of Contents

(1) Principal Component Analysis
(2) Quiver Representations
(3) More motivation
(4) Computing sections: focus on Strongly connected Quivers first
(5) ACYCLIC REDUCTION: REMOVING CYCLES
(6) The Arboreal Replacement

Just Graphs...

Definition (Quiver)

A quiver is a (finite) directed graph.

Representations

Definition (Quiver Representation)

A representation $\boldsymbol{A}_{\mathbf{\bullet}}$ of a quiver $Q=(V, E)$ is an assignment of vector spaces \boldsymbol{A}_{v} to each vertex $v \in V$ and linear maps $\boldsymbol{A}_{e}: \boldsymbol{A}_{u} \rightarrow \boldsymbol{A}_{v}$ to each edge $e: u \rightarrow v$.

$$
\mathbb{R}^{2} \stackrel{A}{\stackrel{A}{\longrightarrow}} \mathbb{R}^{3}
$$

where $A=\left[\begin{array}{lll}2 & 2 & 2 \\ 1 & 0 & 7\end{array}\right], B=\left[\begin{array}{lll}2 & 3 & 4 \\ 2 & 1 & 7\end{array}\right]$.

Remark: This can be viewed as a representation of an algebra (the path algebra of the quiver Q) - the representation is $\operatorname{Tot}\left(A_{\bullet}\right)=\bigoplus_{v \in V} A_{v}$.

Want PC along quiver Representations

Say we are given data $D=\left\{\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{m}\right\} \subseteq \mathbb{R}^{n} \underset{\varphi}{\sim} \operatorname{Tot}\left(\boldsymbol{A}_{\bullet}\right)$. Where \boldsymbol{A}_{\bullet} is a representation of Q.

PCA along the quiver representation doesn't make sense if it is just normal PCA.

Want: the vector (for principal directions) to respect the representation.
That is, if $\gamma=\left(\gamma_{v}\right)_{v \in V} \in \bigoplus_{v \in V} \boldsymbol{A}_{v}$ is a direction with $\|\varphi(\gamma)\|=1$, then we'd like $\boldsymbol{A}_{e}\left(\gamma_{x}\right)=\gamma_{y}$ for all edges $e: x \rightarrow y$ in Q.
So we are interested in the subspace

$$
\Gamma\left(Q, \boldsymbol{A}_{\bullet}\right)=\left\{\left(\gamma_{v}\right)_{v \in V} \in \operatorname{Tot}\left(\boldsymbol{A}_{\bullet}\right): \boldsymbol{A}_{e}\left(\gamma_{x}\right)=\gamma_{y} \text { for all edges } e: x \rightarrow y\right\} .
$$

Table of Contents

(1) Principal Component Analysis
(2) Quiver Representations
(3) More motivation
(4) COMPUTING SECTIONS: FOCUS ON STRONGLY CONNECTED QUIVERS FIRST
(5) ACYCLIC REDUCTION: REMOVING CYCLES
(6) The Arboreal Replacement

Data Tensor

| | $40^{\circ} \mathrm{C}$ | | | $60^{\circ} \mathrm{C}$ | | | $80^{\circ} \mathrm{C}$ | | | $100^{\circ} \mathrm{C}$ | | | $120^{\circ} \mathrm{C}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | p_{1} | p_{2} | p_{3} |
| \boldsymbol{x}_{1} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{2} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{3} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{4} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{5} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{6} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{7} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{8} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{9} | | | | | | | | | | | | | | | |
| \boldsymbol{x}_{10} | | | | | | | | | | | | | | | |

$11 \times 3 \times 5$ contingency table
p_{i} are the variables being measured. Each \boldsymbol{x}_{i} is a sample measurement of p_{1}, p_{2}, p_{3}. Each block is the set of measurements at a different temperature.

Parameters different for liquid vs. gas.
different behaviour at boiling point. Maybe...

	$40^{\circ} \mathrm{C}$			$60^{\circ} \mathrm{C}$			$80^{\circ} \mathrm{C}$			$100^{\circ} \mathrm{C}$		$120^{\circ} \mathrm{C}$	
	p_{1}	p_{2}	p_{3}	p_{1}	p_{2}	p_{3}	p_{1}	p_{2}	p_{3}	p_{2}	p_{2}	p_{3}	
\boldsymbol{x}_{1}													
\boldsymbol{x}_{2}													
\boldsymbol{x}_{3}													
\boldsymbol{x}_{4}													
\boldsymbol{x}_{5}													
\boldsymbol{x}_{6}													
\boldsymbol{x}_{7}													
\boldsymbol{x}_{8}													
\boldsymbol{x}_{9}													
\boldsymbol{x}_{10}													

Parameters different for liquid vs. gas.
different behaviour at boiling point. Maybe...

	$40^{\circ} \mathrm{C}$			$60^{\circ} \mathrm{C}$			$80^{\circ} \mathrm{C}$			$100^{\circ} \mathrm{C}$		$120^{\circ} \mathrm{C}$										
	p_{1}	p_{2}	p_{3}	p_{1}	p_{2}	p_{3}	p_{1}	p_{2}	p_{3}	p_{2}	p_{2}	p_{3}										
\boldsymbol{x}_{1}																						
\boldsymbol{x}_{2}																						
\boldsymbol{x}_{3}																						
\boldsymbol{x}_{4}																						
\boldsymbol{x}_{5}																						
\boldsymbol{x}_{6}																						
\boldsymbol{x}_{7}																						
\boldsymbol{x}_{8}																						
\boldsymbol{x}_{9}																						
\boldsymbol{x}_{10}																						
	\mathbb{R}^{3}										\mathbb{R}^{3}									\mathbb{R}^{3}	\mathbb{R}	\mathbb{R}^{2}

WHY WOULD I GROUP RANDOM DATA? (RHETORICAL)

So maybe there's some relation

Restrict to the case when these maps are linear.

\mathbb{R}^{n} IS JUST FOR EACH ROW

But the data really look like

Linear $T: U \rightarrow W$ induces linear $T \otimes \mathbf{1}_{V}: U \otimes V \rightarrow W \otimes V$.

WANT ...

Look at a simpler example

Want a rank 1 approximation of the data in this quiver representation.

WANT . . .

Look at a simpler example

Want a rank 1 approximation of this quiver representation. Should respect the representation.

Could we have started elsewhere?

Stuck!!!

KEY TAKEAWAYS/OBSERVATIONS

- $\Gamma\left(Q, A_{\bullet}\right)$ is precisely what we want.
- Strongly connected components and minimal vertices are important.
- Arborescences are good: If Q is an arborescence with root ρ, then $\Gamma\left(Q, \boldsymbol{A}_{\mathbf{\bullet}}\right) \cong \boldsymbol{A}_{\rho}$.
- If there are two paths p, q from u to v, then γ_{u} is $\operatorname{good} \operatorname{iff} \gamma_{u} \in \operatorname{ker}\left(\boldsymbol{A}_{p}-\boldsymbol{A}_{q}\right)$.

Table of Contents

(1) Principal Component Analysis
(2) Quiver Representations
(3) More motivation
(4) Computing sections: FOCUS On STrongly connected quivers first
(5) ACYCLIC REDUCTION: REMOVING CYCLES
(6)The Arboreal replacement

EAR DECOMPOSITION

Definition

An ear decomposition Q_{\bullet} of Q is an ordered sequence of $c \geq 1$ subquivers $\left\{Q_{i}=\left(s_{i}, t_{i}: E_{i} \rightarrow V_{i}\right) \mid i \in[c]\right\}$ of Q subject to the following axioms:
(1) the edge sets E_{i} partition E;
(2) the quiver Q_{1} is either a single vertex or a cycle, while Q_{i} for each $i>1$ is a (possibly cyclic) path in Q;
(for each $i>1$, the intersection of V_{i} with the union $\bigcup_{j<i} V_{j}$ equals $\left\{s\left(Q_{i}\right), t\left(Q_{i}\right)\right\}$.

Theorem

A quiver with at least two vertices is strongly connected if and only if it has an ear decomposition.

ExAmples

Arborescence from SC quiver (representaiton)

Fix an origin ρ for Q_{1}.

We get an arboroscence.
For each terminal edge ϵ define $\Delta_{\epsilon}: A_{\rho} \rightarrow A_{t_{\epsilon}}$ by $\Delta_{\epsilon}=A_{p\left(t_{\epsilon}\right)}-A_{\epsilon} \circ A_{p\left(s_{\epsilon}\right)}$.

For the orange edge:

THE ROOT IS THEREFORE

$$
\left(\left.\boldsymbol{A}\right|_{T}\right)_{\rho} \cong \bigcap_{\epsilon \text { terminal }} \operatorname{ker} \Delta_{\epsilon}=: K
$$

LEMMA

$\Gamma\left(Q, A_{\bullet}\right) \cong\left(\left.A_{\bullet}\right|_{T}\right)_{\rho} \cong \bigcap_{\epsilon \text { terminal }} \operatorname{ker} \Delta_{\epsilon}$

WHAT IF THERE'S SOMETHING MORE THAN STRONGLY CONNECTED?

Want to find a representation of the new quiver (arborescence) whose space of sections is unchanged.

LEMMA

Table of Contents

(1) Principal Component Analysis
(2) Quiver Representations
(3) More motivation
(4) Computing sections: focus on Strongly connected Quivers first
(5) ACYCLIC REDUCTION: REMOVING CYCLES

6 The Arboreal replacement

In THE QUIVER

Cycles occur in strongly connected parts. So we
(1) Identify each maximally strongly connected component of the quiver, and
(0) Get an arborescence from there by removing terminal edges (keep track of the roots).

In THE REPRESENTATION

For the \bullet in the $(2,2)$ position, what if after pushing a vector to $(2,3)$ (via $(2,1))$, the vector doesn't fall into K^{\prime} ? So, replace it with $A_{p\left(\bullet \rightarrow K^{\prime}\right)}^{-1}\left(K^{\prime}\right)$. In fact, it needs to be replaced with the intersection of all paths $\bullet \rightarrow \rho(R)$ for all strongly connected components R, where $\rho(R)$ is the root of R. For the \bullet in the $(2,1)$ position, replace it with intersection of all $A_{p(\bullet \rightarrow \rho(R))}^{-1}(K(R))$.

Table of Contents

(1) Principal Component Analysis
(2) Quiver Representations
(3) More motivation
(4) Computing sections: focus on Strongly connected Quivers first
(5) ACYCLIC REDUCTION: REMOVING CYCLES
(6) The Arboreal Replacement

Still not Done?

Start with

Now FLOW THROUGH...

For representations. . .

Replace each \boldsymbol{A}_{v} with the equalizer Φ_{v} of $\left\{\boldsymbol{A}_{e} \varphi_{s(e)}: \Phi_{v}^{\prime} \rightarrow \boldsymbol{A}_{v} \mid e \in E_{\text {in }}(v)\right\}$ with a flow map $\varphi_{v}: \Phi_{v} \rightarrow A_{v}$ given by the restriction of $\boldsymbol{A}_{e} \varphi_{s(e)}$.

LEMMA

$\Gamma\left(Q, A_{\bullet}\right) \cong \bigcap_{v \in V_{\max }} \Phi_{v}=: Q \Phi\left(A_{\bullet}\right)$.

The resulting quiver Representation

LEMMA

If $T^{+} \subseteq Q^{+}$is a spanning arborescence (found by BFS) of the augmented quiver with root ρ, then an arboreal replacement of \boldsymbol{A}_{\bullet}, is the representation given by $\boldsymbol{A}_{\bullet}^{+}$of T^{+}given by $\left(\boldsymbol{A}_{\bullet}^{+}\right)_{v}=\left\{\begin{array}{ll}\Phi\left(A_{\bullet}\right) & \text { if } v=\rho \\ \boldsymbol{A}_{v} & \text { otherwise }\end{array}\right.$ and $\left(\boldsymbol{A}_{\bullet}^{+}\right)_{e}=\left\{\begin{array}{ll}\left.A_{e}\right|_{\Phi\left(A_{\bullet}\right)} & \text { if } s(e)=\rho \\ \boldsymbol{A}_{e} & \text { otherwise }\end{array}\right.$.

Thankyou!

