# QUANTUM COMPUTATION

## Lecture 4

Nilava Metya nilavam@cmi.ac.in

1 August 2020

## 1 Some group theory

We let G be a group. We look at the following two sets related to the group G.

**Definition 1.1.** The vector space of complex valued functions on the group G is

$$L^2(G) := \{ f : G \to \mathbb{C} \}$$

The dual group or character group of G is defined as

 $\hat{G} := \left\{ \varphi : G \to S^1 \subseteq \mathbb{C} \mid \varphi \text{ is a homomorphism} \right\}$ 

Exercise 1

Find the dual group of the cyclic group  $\mathbb{Z}_n$  for  $n \in \mathbb{N}, n \geq 2$ .

EXERCISE 2 Prove the following:

1.  $L^2(G) \cong \mathbb{C}^{|G|}$  for any group G.

2.  $\hat{G}$  is a group.

3. Let G be a finite group.  $L^2(G)$  is an inner product space with respect to the inner product

$$\langle f|h\rangle = \frac{1}{|G|} \sum_{x \in G} \overline{f(x)}h(x)$$

for  $f, h \in L^2(G)$ .

We will be looking at finite abelian groups G for a very special reason which is brought out in the following theorem and the subsequent claims.

**Theorem 1.2** (Fundamental theorem of finite abelian groups). A finite abelian group G is isomorphic to the direct product of cyclic groups of prime-power orders. This decomposition is unique up to the order in which the factors are written.

**Corollary 1.3.** If G is a finite abelian group then  $G \cong \hat{G}$ .

**Proposition 1.4.** Let G be a finite abelian group. Then:

- $1. \ \chi \in \hat{G} \implies |\chi(g)| = 1 \ \forall \ g \in G.$
- 2. For  $\chi_1, \chi_2 \in \hat{G}$

$$\langle \chi_1 | \chi_2 \rangle = \begin{cases} 1 & \chi_1 = \chi_2 \\ 0 & otherwise \end{cases}$$

3.  $\hat{G}$  is an orthonormal basis of  $L^2(G)$ .

# 2 The (discrete) Fourier Transform

Let G be a finite abelian group of order N (we will make this assumption throughout this section). We have already seen that  $G \cong \hat{G}$  in that case. Note that this isomorphism is not unique. We fix one and name it  $x \mapsto \chi_x$ , that is, the character corresponding to  $x \in G$  is  $\chi_x \in \hat{G}$ .

**Definition 2.1.** For  $f \in L^2(G)$  define  $\hat{f} \in L^2(G)$  as

$$\hat{f}(g) = \frac{1}{\sqrt{N}} \sum_{x \in G} \overline{\chi_g(x)} f(x)$$

The function  $F: L^2(G) \to L^2(G)$  given by  $f \xrightarrow{F} \hat{f}$  is called the Fourier Transform.

**Proposition 2.2** (Fourier inversion).  $f(g) = \frac{1}{\sqrt{N}} \sum_{x \in G} \chi_x(g) \hat{f}(x)$ 

For quantum computation, we will use the cyclic group  $G = \mathbb{Z}_N$  with  $N = 2^n$ . Since any  $f \in L^2(\mathbb{Z}_N)$  can be identified with a vector in  $\mathbb{C}^N$ , in order to find the Fourier transform of a function (that is a vector in  $\mathbb{C}^N$ ) is is enough to look at the action (of Fourier transform) on the vectors in the (canonical) basis  $\mathcal{B} = \{|j\rangle\}_{j=0}^{N-1}$  of  $\mathbb{C}^N$ . Note that this is possible because the Fourier transform is a linear map. This transformation F is given by

$$F\left|j\right\rangle = \frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}\exp\left\{\frac{2\pi i}{N}jk\right\}\left|k\right\rangle$$

If we execute it naively, the time complexity to find all the transforms will be  $O(N^2)$ .

#### 2.1 Fast Fourier Transform

The best (in terms of time complexity) known classical algorithm is the Fast Fourier Transform which is a slight modification of the Fourier Transform. This uses divide and conquer to bring down the time complexity to  $O(N \lg N)$ . This will be evident from the following:

$$\begin{split} F\left|j\right\rangle &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp\left\{\frac{2\pi i}{N} jk\right\} \left|k\right\rangle \\ &= \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{N/2}} \sum_{k=0}^{N/2-1} \exp\left\{\frac{2\pi i}{N/2} jk\right\} \left|2k\right\rangle + \frac{1}{\sqrt{N/2}} \sum_{k=0}^{N/2-1} \exp\left\{\frac{2\pi i}{N} j(2k+1)\right\} \left|2k+1\right\rangle\right] \\ &= \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{N/2}} \sum_{k=0}^{N/2-1} \exp\left\{\frac{2\pi i}{N/2} jk\right\} \left|2k\right\rangle + \frac{\exp\left\{\frac{2\pi i j}{N}\right\}}{\sqrt{N/2}} \sum_{k=0}^{N/2-1} \exp\left\{\frac{2\pi i}{N/2} jk\right\} \left|2k+1\right\rangle\right] \end{split}$$

The above is popularly known as the Danielson-Lanczos Lemma. This procedure can be applied recursively, and treating the even and odd parts separately in each step helps to avoid redundant calculations thus reducing the time complexity.

#### 2.2 Quantum Fourier Transform

EXERCISE 3

Verify that the above transformation F is unitary and its matrix with respect to the basis  $\mathcal{B}$  is given by  $F = (F_{j,k})_{N \times N}$  where  $F_{jk} = \frac{1}{\sqrt{N}} \exp\left\{\frac{2\pi i}{N}jk\right\}$ .

**Proposition 2.3.** Consider the Hilbert space  $H = \mathbb{C}^N = C^{2^n} \cong (\mathbb{C}^2)^{\otimes n}$ . And take the basis element  $|j\rangle$  where  $j = \sum_{t=1}^n j_t 2^{n-t}$  (because  $j \in \{0, 1, ..., 2^n - 1\}$ ). Then the Fourier transform F has the following representation:

$$F|j\rangle = F|j_1...j_n\rangle = \frac{1}{2^{\frac{n}{2}}} \bigotimes_{l=1}^n \left(|0\rangle + \exp\left\{2\pi i \left(\overline{0.j_{n-(l-1)}...j_n}\right)_2\right\}|1\rangle\right)$$
$$\frac{1}{(i_n)} = \sum_{l=1}^{n-(l-1)} \frac{j_{l+l-1}}{2}$$

where  $(\overline{0.j_l...j_n})_2 = \sum_{t=1}^{n-(l-1)} \frac{j_{t+l-1}}{2^t}.$ 

*Proof.* Every  $|k\rangle \in \mathcal{B}$  can be expressed as  $k = (\overline{k_1 \dots k_n})_2$  as the base-2 expansion. Varying  $|k\rangle \in \mathcal{B}$  is same as varying each  $k_t \in \{0, 1\}$ .

$$F|j\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp\left\{\frac{2\pi i}{N} jk\right\} |k\rangle$$
$$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \sum_{k_2=0}^{1} \cdots \sum_{k_n=0}^{1} \exp\left\{2\pi i j \sum_{l=1}^{n} \frac{k_l}{2^l}\right\} |k_1 \dots k_n\rangle$$
$$= \frac{1}{\sqrt{N}} \sum_{k_1, k_2, \dots, k_n} \bigotimes_{l=1}^{n} \exp\left\{\frac{2\pi i j k_l}{2^l}\right\} |k_l\rangle$$
$$= \frac{1}{\sqrt{N}} \bigotimes_{l=1}^{n} \left(|0\rangle + \exp\left\{\frac{2\pi i j}{2^l}\right\} |1\rangle\right)$$

Now  $\frac{j}{2^l} = \left\lfloor \frac{j}{2^l} \right\rfloor + \frac{j_{n-(l-1)}}{2} + \dots + \frac{j_{n-1}}{2^{l-1}} + \frac{j_n}{2^l} = \left\lfloor \frac{j}{2^l} \right\rfloor + \left(\overline{0.j_{n-(l-1)}\dots j_n}\right)_2$ . And so we can ignore the integer part in the above (because an integer power of  $\exp\{2\pi i\}$  evaluates to 1). Hence, we finally get

$$F|j\rangle = \frac{1}{2^{\frac{n}{2}}} \bigotimes_{l=1}^{n} \left(|0\rangle + \exp\left\{2\pi i \left(\overline{0.j_{n-(l-1)}\dots j_n}\right)_2\right\} |1\rangle\right)$$

The quantum circuit to implement the above algorithm is as follows.



Figure 1: Quantum circuit for Quantum Fourier Transform

The diagram has been taken from the book *Quantum Computation and Quantum Information* by Nielsen and Chuang. The gate H represents the Hadamard gate (though, we have used  $\mathcal{H}$  throughout the seminar) and  $R_k$  is the gate  $R_k = \begin{bmatrix} 1 & 0 \\ 0 & \exp\{\frac{2\pi i}{k}\} \end{bmatrix}$ .