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1 Quantum entanglement (examples)

Exercise 1
Show that a (natural) inner product on H ⊗H is 〈αβ|γδ〉 = 〈α|γ〉 〈β|δ〉.

Exercise 2
Let |α〉 , |β〉 be an orthonormal basis of H = C2 and consider the observable X = 0 |α〉〈α|+ 1 |β〉〈β|.
Measuring X ⊗ 1 with respect to the Bell state |Φ+〉 forces the second qubit to collapse to the
conjugate of same state as the first qubit. Measuring with respect to |Ψ−〉 does the opposite. Try
for |Φ−〉 and |Ψ+〉.

Solution. Let |α〉 = a |0〉 + b |1〉 for some a, b ∈ C, |a|2 + |b|2 = 1. So |β〉 = d |0〉 − c |1〉 such that
(c, d) = eiθ(a∗, b∗) for some θ. We have X = 0 |α〉〈α|+1 |β〉〈β| = 0Eα+1Eβ When we measure X⊗1
in the state |Φ+〉 = 1√

2
(|00〉+ |11〉), we have Prob|Φ+〉(X ⊗ 1 = 0) = 〈Φ+|(Eα ⊗ 1)Φ+〉. Some small

results: 〈α|0〉 = a∗, 〈α|1〉 = b∗, 〈0|α〉 = a, 〈1|α〉 = b. Firstly note that

(Eα ⊗ 1)
∣∣Φ+

〉
=

1√
2

[(a∗ |α〉)⊗ |0〉+ (b∗ |α〉)⊗ |1〉]

=
1√
2

[|α〉 ⊗ (a∗ |0〉) + |α〉 ⊗ (b∗ |1〉)]

=
1√
2
|α〉 ⊗ (a∗ |0〉+ b∗ |1〉) =

1√
2
|α〉 ⊗ |α〉

And this gives us Prob|Φ+〉(X ⊗ 1 = 0) =
〈
Φ+
∣∣(Eα ⊗ 1)Φ+

〉
=

1

2
. And so

∣∣∣Φ̃+
〉

= |α〉 ⊗ |α〉.

Exercise 3
Let |α〉 , |β〉 be an orthonormal basis of H = C2. Then the Bell state |Φ+〉 can be written as∣∣Φ+

〉
=

1√
2

(
|αα〉+

∣∣ββ〉).
Try a similar thing for the other Bell states.

2 The commutator and anti-commutator

Definition 2.1. The commutator between two operators A,B is [A,B] := AB −BA.
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Definition 2.2. The anti-commutator between two operators A,B is {A,B} := AB +BA.

Exercise 4
Check the following for operators A,B,C and scalars a, b:

1. [aA+ bB,C] = a[A,C] + b[B,C], [C, aA+ bB] = a[C,A] + b[C,B]

2. [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

3. [A,B] = −[B,A]

4. [A,B]∗ = [B∗, A∗]

5. [A,BC] = [A,B]C +B[A,C], [AB,C] = A[B,C] + [A,C]B

6. AB =
[A,B] + {A,B}
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7. If A,B are self-adjoint, so is i[A,B].

Theorem 2.3 (Simultaneous diagonalization theorem). Suppose A,B are hermitian operators.
Then [A,B] = 0 iff they can be simultaneously diagonalized with respect to some (common) or-
thonormal basis.

Remark 2.4. The Lie brackets used here is the quantum mechanics equivalent of the Poisson brackets
used in classical mechanics. It might be a good thought exercise to figure out how the simultaneous
diagonalization theorem has a physical meaning!

3 Heisenberg’s Uncertainty Principle

Definition 3.1. The expected value or expectation of an observable X with respect to a state |ψ〉
is 〈X〉ψ := 〈ψ|X|ψ〉. Due to abuse of notation, we just write 〈X〉.

Exercise 5
Show that the above definition of expectation of a quantum observable is as good as the definition
of expectation of a classical random variable, that is, show that if X =

∑
λ∈σ(X) λEλ is the spectral

decomposition (all Eλ’s are rank one projections) then 〈ψ|X|ψ〉 =
∑

λ∈σ(X)

λ · Probψ(X = λ).

Solution.

E(X) =
∑

λ∈σ(X)

λ · Probψ(X = λ)

=
∑

λ∈σ(X)

λ 〈ψ|Eλ|ψ〉

=
∑

λ∈σ(X)

〈ψ|λEλ|ψ〉

=

〈
ψ

∣∣∣∣∣∣
∑

λ∈σ(X)

λEλ

∣∣∣∣∣∣ψ
〉

= 〈ψ|X|ψ〉 = 〈X〉
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Definition 3.2. The standard deviation of an obvservable X with respect to the state |ψ〉 is defined

as ∆ψ(X) :=
√
〈X2〉ψ − 〈X〉

2
ψ. Again due to abuse of notation, we simply write ∆(X).

Exercise 6
The above is a good definition of standard deviation, that is, verify that (∆(X))2 = 〈(X − 〈X〉)2〉.

Solution.

〈(X − 〈X〉)2〉 = 〈X2 − 2 〈X〉X + 〈X〉2〉

=
〈
ψ
∣∣∣X2 − 2 〈X〉X + 〈X〉2

∣∣∣ψ〉
=
〈
ψ
∣∣X2

∣∣ψ〉− 2 〈X〉 〈ψ|X|ψ〉+ 〈X〉2 〈ψ|ψ〉

= 〈X2〉 − 2 〈X〉2 + 〈X〉2

= 〈X2〉 − 〈X〉2 = (∆(X))
2

Theorem 3.3 (Heisenberg’s inequality). If A,B are observables in a quantum system under the
vector state |ρ〉, then

∆(A) ·∆(B) ≥ 1

2
〈[A,B]〉

Proof. Let X,Y be any observables in a quantum system with state |ρ〉.
Say 〈ρ|XY |ρ〉 = a+ ib for some a, b ∈ R.
Then we have

〈ρ|[X,Y ]|ρ〉 = 〈ρ|XY |ρ〉 − 〈ρ|Y X|ρ〉 = 2ib

〈ρ|{X,Y }|ρ〉 = 〈ρ|XY |ρ〉+ 〈ρ|Y X|ρ〉 = 2a

And thus, | 〈ρ|[X,Y ]|ρ〉 |2+| 〈ρ|{X,Y }|ρ〉 |2 = 4| 〈ρ|XY |ρ〉 |2 Applying the Cauchy Schwarz inequality
and have,

| 〈ρ|XY |ρ〉 |2 = | 〈Xρ|Y ρ〉 |2
CS

≤ 〈Xρ|Xρ〉 〈Y ρ|Y ρ〉 =
〈
ρ
∣∣X2

∣∣ρ〉 〈ρ∣∣Y 2
∣∣ρ〉 = 〈X2〉 〈Y 2〉

=⇒ 4 〈X2〉 〈Y 2〉 ≥ 4| 〈ρ|XY |ρ〉 |2 = | 〈ρ|[X,Y ]|ρ〉 |2 + | 〈ρ|{X,Y }|ρ〉 |2 ≥ | 〈ρ|[X,Y ]|ρ〉 |2

Now take X = A − 〈A〉 , Y = B − 〈B〉 in the above. Check that 〈ρ|[X,Y ]|ρ〉 = 〈ρ|[A,B]|ρ〉. So we
finally have

∆(A) ·∆(B) ≥ 1

2
〈[A,B]〉

4 Quantum Gates

Definition 4.1. An n−qubit quantum gate is a unitary operator on (C2)⊗n (or unitary matrix,
considering canonical basis).
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4.1 1−qubit quantum gates

4.1.1 Pauli gates

The NOT gate: σ1 = σx =

[
0 1
1 0

]
. σ1 |0〉 = |1〉 , σ1 |1〉 = |0〉

σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
4.1.2 Hadamard gate

H := 1√
2

[
1 1
1 −1

]
|+〉 := H |0〉 =

1√
2

(|0〉+ |1〉) |−〉 := H |1〉 =
1√
2

(|0〉 − |1〉)

Exercise 7

Verify that H⊗n |x〉 =
1

2n/2

∑
y∈{0,1}n

(−1)〈x|y〉 |y〉

4.1.3 Phase gate

S := |0〉+ i |1〉 =

[
1 0
0 i

]

4.1.4
π

8
−gate

T := ei
π
8

[
e−i

π
8 0

0 ei
π
8

]

4.2 2−qubit quantum gates

4.2.1 Controlled NOT gate

This gate reads the first qubit and performs the NOT operation on the second qubit. That is, we
have the following transformations:

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

Let π1, π2 be the projection operators

[
1 0
0 0

]
,

[
0 0
0 1

]
(respectively) on C2. Then the CNOT

gate can be defined as
CNOT := π1 ⊗ 1 + π2 ⊗ σx
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We can also define another CNOT gate which functions in exactly the opposite way: The control
qubit is the second bit and the NOT is performed on the first bit. So define

C ′NOT := 1⊗ π1 + σx ⊗ π2

Figure 1: CNOT gate (with control in the top channel)

The matrix forms look like

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 C ′NOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Example. The column matrix forms of the vectors |00〉 , |01〉 , |10〉 , |11〉 ∈ H ⊗ H would be

1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 respectively. So, applying CNOT on the vector (a |0〉+ b |1〉)⊗ |0〉 gives

(CNOT )(a |00〉+ b |10〉) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a
0
b
0

 =


a
0
0
b

 = a |00〉+ b |11〉

4.2.2 Controlled U gate

This gate is similar to the controlled NOT gate. The first qubit acts as the control bit, and the unitary
operation U is performed on the second qubit. That is, we have the following transformations:

|00〉 7→ |0〉 ⊗ |0〉
|01〉 7→ |0〉 ⊗ |1〉
|10〉 7→ |1〉 ⊗ (U |0〉)
|11〉 7→ |1〉 ⊗ (U |1〉)

The gate can be defined by
CU := π1 ⊗ 1 + π2 ⊗ U

Similarly we can define
C ′U := 1⊗ π1 + U ⊗ π2
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Figure 2: Controlled U gate (with control in the top channel)

The matrix form looks like

CU =


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 C ′U =


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d


where U =

[
a b
c d

]
.

Remark 4.2. The CNOT and C ′NOT are just the cases when U = σx.

4.2.3 SWAP gate

The SWAP gate does as you might expect: it swaps the two qubits. So the transformations are as
follows:

|00〉 7→ |00〉
|01〉 7→ |10〉
|10〉 7→ |01〉
|11〉 7→ |11〉

It is relatively easier to construct the matrix first

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Exercise 8
Verify that SWAP = (CNOT )(C ′NOT )(CNOT )

The above exercise helps us to define

SWAP := π1 ⊗ π1 + π2 ⊗ π1 + (Xπ1)⊗ (Xπ2) + (Xπ2)⊗ (Xπ1)

4.3 3−qubit quantum gates

4.3.1 Toffoli Gate (CCNOT )

CCNOT =

[
16 06×2

02×6 X

]
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Figure 3: The Toffoli Gate (or CCNOT gate) with control in the first two qubits

4.4 Preparing Bell states

Bell states can be prepared by the action of H ⊗ 1 followed by CNOT on the standard bases of
C2 ⊗ C2.

(CNOT )(H ⊗ 1) |00〉 =CNOT

(
1√
2

(|0〉+ |1〉)⊗ |0〉
)

=CNOT

(
1√
2

(|00〉+ |01〉)
)

=
1√
2

(|00〉+ |01〉)
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