QUANTUM COMPUTATION

Lecture 3

Nilava Metva nilavam@cmi.ac.in

26 July 2020

1 Quantum entanglement (examples)

EXERCISE 1

Show that a (natural) inner product on $H \otimes H$ is $\langle \alpha \beta | \gamma \delta \rangle = \langle \alpha | \gamma \rangle \langle \beta | \delta \rangle$.

EXERCISE 2

Let $|\alpha\rangle$, $|\beta\rangle$ be an orthonormal basis of $H = \mathbb{C}^2$ and consider the observable $X = 0 |\alpha\rangle\langle\alpha| + 1 |\beta\rangle\langle\beta|$. Measuring $X \otimes \mathbf{1}$ with respect to the Bell state $|\Phi^+\rangle$ forces the second qubit to collapse to the conjugate of same state as the first qubit. Measuring with respect to $|\Psi^{-}\rangle$ does the opposite. Try for $|\Phi^-\rangle$ and $|\Psi^+\rangle$.

Solution. Let $|\alpha\rangle = a |0\rangle + b |1\rangle$ for some $a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1$. So $|\beta\rangle = d |0\rangle - c |1\rangle$ such that $(c,d) = e^{i\theta}(a^*,b^*)$ for some θ . We have $X = 0 |\alpha\rangle\langle\alpha| + 1 |\beta\rangle\langle\beta| = 0E_{\alpha} + 1E_{\beta}$ When we measure $X \otimes \mathbf{1}$ in the state $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, we have $\operatorname{Prob}_{|\Phi^+\rangle}(X \otimes \mathbf{1} = 0) = \langle \Phi^+|(E_{\alpha} \otimes \mathbf{1})\Phi^+\rangle$. Some small results: $\langle \alpha | 0 \rangle = a^*, \langle \alpha | 1 \rangle = b^*, \langle 0 | \alpha \rangle = a, \langle 1 | \alpha \rangle = b$. Firstly note that

$$(E_{\alpha} \otimes \mathbf{1}) |\Phi^{+}\rangle = \frac{1}{\sqrt{2}} [(a^{*} |\alpha\rangle) \otimes |0\rangle + (b^{*} |\alpha\rangle) \otimes |1\rangle]$$

$$= \frac{1}{\sqrt{2}} [|\alpha\rangle \otimes (a^{*} |0\rangle) + |\alpha\rangle \otimes (b^{*} |1\rangle)]$$

$$= \frac{1}{\sqrt{2}} |\alpha\rangle \otimes (a^{*} |0\rangle + b^{*} |1\rangle) = \frac{1}{\sqrt{2}} |\alpha\rangle \otimes |\overline{\alpha}\rangle$$

And this gives us $\operatorname{Prob}_{|\Phi^+\rangle}(X \otimes \mathbf{1} = 0) = \langle \Phi^+ | (E_\alpha \otimes \mathbf{1}) \Phi^+ \rangle = \frac{1}{2}$. And so $|\tilde{\Phi}^+\rangle = |\alpha\rangle \otimes |\overline{\alpha}\rangle$.

EXERCISE 3

Let $|\alpha\rangle, |\beta\rangle$ be an orthonormal basis of $H = \mathbb{C}^2$. Then the Bell state $|\Phi^+\rangle$ can be written as $|\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|\alpha \overline{\alpha} \rangle + |\beta \overline{\beta} \rangle \right)$.

Try a similar thing for the other Bell states.

2 The commutator and anti-commutator

Definition 2.1. The *commutator* between two operators A, B is [A, B] := AB - BA.

Definition 2.2. The anti-commutator between two operators A, B is $\{A, B\} := AB + BA$.

Exercise 4

Check the following for operators A, B, C and scalars a, b:

- $1. \ [aA+bB,C] = a[A,C] + b[B,C], [C,aA+bB] = a[C,A] + b[C,B]$
- $2. \ [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0$
- 3. [A, B] = -[B, A]
- 4. $[A, B]^* = [B^*, A^*]$
- 5. [A, BC] = [A, B]C + B[A, C], [AB, C] = A[B, C] + [A, C]B
- 6. $AB = \frac{[A,B] + \{A,B\}}{2}$
- 7. If A, B are self-adjoint, so is i[A, B].

Theorem 2.3 (Simultaneous diagonalization theorem). Suppose A, B are hermitian operators. Then [A, B] = 0 iff they can be simultaneously diagonalized with respect to some (common) orthonormal basis.

Remark 2.4. The Lie brackets used here is the quantum mechanics equivalent of the Poisson brackets used in classical mechanics. It might be a good thought exercise to figure out how the simultaneous diagonalization theorem has a physical meaning!

3 Heisenberg's Uncertainty Principle

Definition 3.1. The *expected value* or *expectation* of an observable X with respect to a state $|\psi\rangle$ is $\langle X \rangle_{\psi} := \langle \psi | X | \psi \rangle$. Due to abuse of notation, we just write $\langle X \rangle$.

EXERCISE 5

Show that the above definition of expectation of a quantum observable is as good as the definition of expectation of a classical random variable, that is, show that if $X = \sum_{\lambda \in \sigma(X)} \lambda E_{\lambda}$ is the spectral decomposition (all E_{λ} 's are rank one projections) then $\langle \psi | X | \psi \rangle = \sum_{\lambda \in \sigma(X)} \lambda \cdot \operatorname{Prob}_{\psi}(X = \lambda)$.

Solution.

$$\mathbb{E}(X) = \sum_{\lambda \in \sigma(X)} \lambda \cdot \operatorname{Prob}_{\psi}(X = \lambda)$$
$$= \sum_{\lambda \in \sigma(X)} \lambda \langle \psi | E_{\lambda} | \psi \rangle$$
$$= \sum_{\lambda \in \sigma(X)} \langle \psi | \lambda E_{\lambda} | \psi \rangle$$
$$= \left\langle \psi \left| \sum_{\lambda \in \sigma(X)} \lambda E_{\lambda} \right| \psi \right\rangle$$
$$= \langle \psi | X | \psi \rangle = \langle X \rangle$$

Definition 3.2. The standard deviation of an obvservable X with respect to the state $|\psi\rangle$ is defined as $\Delta_{\psi}(X) := \sqrt{\langle X^2 \rangle_{\psi} - \langle X \rangle_{\psi}^2}$. Again due to abuse of notation, we simply write $\Delta(X)$.

EXERCISE 6

The above is a good definition of standard deviation, that is, verify that $(\Delta(X))^2 = \langle (X - \langle X \rangle)^2 \rangle$.

Solution.

$$\langle (X - \langle X \rangle)^2 \rangle = \langle X^2 - 2 \langle X \rangle X + \langle X \rangle^2 \rangle$$

$$= \left\langle \psi \Big| X^2 - 2 \langle X \rangle X + \langle X \rangle^2 \Big| \psi \right\rangle$$

$$= \left\langle \psi \Big| X^2 \Big| \psi \right\rangle - 2 \left\langle X \right\rangle \left\langle \psi | X | \psi \right\rangle + \left\langle X \right\rangle^2 \left\langle \psi | \psi \right\rangle$$

$$= \left\langle X^2 \right\rangle - 2 \left\langle X \right\rangle^2 + \left\langle X \right\rangle^2$$

$$= \left\langle X^2 \right\rangle - \left\langle X \right\rangle^2 = (\Delta(X))^2$$

Theorem 3.3 (Heisenberg's inequality). If A, B are observables in a quantum system under the vector state $|\rho\rangle$, then

$$\Delta(A) \cdot \Delta(B) \ge \frac{1}{2} \left< [A, B] \right>$$

Proof. Let X, Y be any observables in a quantum system with state $|\rho\rangle$. Say $\langle \rho | XY | \rho \rangle = a + ib$ for some $a, b \in \mathbb{R}$. Then we have

$$\langle \rho | [X, Y] | \rho \rangle = \langle \rho | XY | \rho \rangle - \langle \rho | YX | \rho \rangle = 2ib \langle \rho | \{X, Y\} | \rho \rangle = \langle \rho | XY | \rho \rangle + \langle \rho | YX | \rho \rangle = 2a$$

And thus, $|\langle \rho | [X,Y] | \rho \rangle|^2 + |\langle \rho | \{X,Y\} | \rho \rangle|^2 = 4 |\langle \rho | XY | \rho \rangle|^2$ Applying the Cauchy Schwarz inequality and have,

$$\begin{split} |\langle \rho | XY | \rho \rangle|^2 &= |\langle X\rho | Y\rho \rangle|^2 \stackrel{\text{CS}}{\leq} \langle X\rho | X\rho \rangle \langle Y\rho | Y\rho \rangle = \langle \rho | X^2 | \rho \rangle \langle \rho | Y^2 | \rho \rangle = \langle X^2 \rangle \langle Y^2 \rangle \\ \implies 4 \langle X^2 \rangle \langle Y^2 \rangle \geq 4 |\langle \rho | XY | \rho \rangle|^2 = |\langle \rho | [X,Y] | \rho \rangle|^2 + |\langle \rho | \{X,Y\} | \rho \rangle|^2 \geq |\langle \rho | [X,Y] | \rho \rangle|^2 \end{split}$$

Now take $X = A - \langle A \rangle$, $Y = B - \langle B \rangle$ in the above. Check that $\langle \rho | [X, Y] | \rho \rangle = \langle \rho | [A, B] | \rho \rangle$. So we finally have

$$\Delta(A)\cdot \Delta(B) \geq \frac{1}{2}\left<[A,B]\right>$$

Quantum Gates 4

Definition 4.1. An *n*-qubit quantum gate is a unitary operator on $(\mathbb{C}^2)^{\otimes n}$ (or unitary matrix, considering canonical basis).

4.1 1-qubit quantum gates

4.1.1 Pauli gates

The NOT gate:
$$\sigma_1 = \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. $\sigma_1 |0\rangle = |1\rangle, \sigma_1 |1\rangle = |0\rangle$
 $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
 $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

4.1.2 Hadamard gate

$$\begin{aligned} \mathcal{H} &:= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \\ & |+\rangle &:= \mathcal{H} |0\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \\ & |-\rangle &:= \mathcal{H} |1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) \end{aligned}$$

EXERCISE 7 Verify that $\mathcal{H}^{\otimes n} | \boldsymbol{x} \rangle = \frac{1}{2^{n/2}} \sum_{\boldsymbol{y} \in \{0,1\}^n} (-1)^{\langle \boldsymbol{x} | \boldsymbol{y} \rangle} | \boldsymbol{y} \rangle$

4.1.3 Phase gate

$$S := |0\rangle + i |1\rangle = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

4.1.4 $\frac{\pi}{8}$ -gate
$$T := e^{i\frac{\pi}{8}} \begin{bmatrix} e^{-i\frac{\pi}{8}} & 0 \\ 0 & e^{i\frac{\pi}{8}} \end{bmatrix}$$

4.2 2-qubit quantum gates

4.2.1 Controlled NOT gate

This gate reads the first qubit and performs the NOT operation on the second qubit. That is, we have the following transformations:

$$\begin{array}{l} |00\rangle \mapsto |00\rangle \\ |01\rangle \mapsto |01\rangle \\ |10\rangle \mapsto |11\rangle \\ |11\rangle \mapsto |10\rangle \end{array}$$

Let π_1, π_2 be the projection operators $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ (respectively) on \mathbb{C}^2 . Then the *CNOT* gate can be defined as

$$CNOT := \pi_1 \otimes \mathbf{1} + \pi_2 \otimes \sigma_a$$

We can also define another CNOT gate which functions in exactly the opposite way: The control qubit is the second bit and the NOT is performed on the first bit. So define

$$C'NOT := \mathbf{1} \otimes \pi_1 + \sigma_x \otimes \pi_2$$

Figure 1: CNOT gate (with control in the top channel)

The matrix forms look like

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \qquad C'NOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

EXAMPLE. The column matrix forms of the vectors $|00\rangle, |01\rangle, |10\rangle, |11\rangle \in H \otimes H$ would be $\begin{bmatrix} 0 \end{bmatrix}$ $\left|, \begin{array}{c} 0\\ 0\\ 0\\ 1 \end{array}\right| \text{ respectively. So, applying } CNOT \text{ on the vector } \left(a \left|0\right\rangle + b \left|1\right\rangle\right) \otimes \left|0\right\rangle \text{ gives }\right|$ $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ 1

$$(CNOT)(a|00\rangle + b|10\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ 0 \\ b \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ b \\ b \end{bmatrix} = a|00\rangle + b|11\rangle$$

4.2.2 Controlled U gate

This gate is similar to the controlled NOT gate. The first qubit acts as the control bit, and the unitary operation U is performed on the second qubit. That is, we have the following transformations:

$$\begin{array}{l} |00\rangle \mapsto |0\rangle \otimes |0\rangle \\ |01\rangle \mapsto |0\rangle \otimes |1\rangle \\ |10\rangle \mapsto |1\rangle \otimes (U \, |0\rangle) \\ |11\rangle \mapsto |1\rangle \otimes (U \, |1\rangle) \end{array}$$
The gate can be defined by
$$CU := \pi_1 \otimes \mathbf{1} + \pi_2 \otimes U$$
Similarly we can define
$$C'U := \mathbf{1} \otimes \pi_1 + U \otimes \pi_2$$

Figure 2: Controlled U gate (with control in the top channel)

The matrix form looks like

$$CU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} \qquad \qquad C'U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & c & 0 & d \end{bmatrix}$$

where $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Remark 4.2. The CNOT and C'NOT are just the cases when $U = \sigma_x$.

4.2.3 SWAP gate

The SWAP gate does as you might expect: it swaps the two qubits. So the transformations are as follows:

$$\begin{array}{l} |00\rangle \mapsto |00\rangle \\ |01\rangle \mapsto |10\rangle \\ |10\rangle \mapsto |01\rangle \\ |11\rangle \mapsto |11\rangle \end{array}$$

It is relatively easier to construct the matrix first

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

EXERCISE 8

Verify that SWAP = (CNOT)(C'NOT)(CNOT)

The above exercise helps us to define

$$SWAP := \pi_1 \otimes \pi_1 + \pi_2 \otimes \pi_1 + (X\pi_1) \otimes (X\pi_2) + (X\pi_2) \otimes (X\pi_1)$$

4.3 3-qubit quantum gates

4.3.1 Toffoli Gate (CCNOT)

 $CCNOT = \begin{bmatrix} \mathbf{1}_6 & \mathbf{0}_{6\times 2} \\ \mathbf{0}_{2\times 6} & X \end{bmatrix}$

Figure 3: The Toffoli Gate (or *CCNOT* gate) with control in the first two qubits

4.4 Preparing Bell states

Bell states can be prepared by the action of $\mathcal{H} \otimes \mathbf{1}$ followed by CNOT on the standard bases of $\mathbb{C}^2 \otimes \mathbb{C}^2$.

$$(CNOT)(\mathcal{H} \otimes \mathbf{1}) |00\rangle = CNOT \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle\right)$$
$$= CNOT \left(\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)\right)$$
$$= \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$