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Whether mentioned or not, we will assume H to be a finite dimensional Hilbert space over C.

1 Notation

In quantum computation, we generally use the finite dimensional Hilbert space H = Cn. Since this
has a canonical basis, say (ei)

n
i=1, we can freely talk about a vector or linear operator interchangibly

with their matrix forms. And this gives the natural isomorphism

n∑
i=1

viei 7→
[
v∗1 . . . v∗n

]
, thus H

and H∗ are conjugate linearly isomorphic. The image of a vector ξ, under the above isomorphism,
is called its dual and denoted by ξ∗ in mathematics. However for the sake of quantum mechanics,
we will denote the vector by |ξ〉 (read as ket of xi) and its dual is denoted by 〈ξ| (read as bra of xi),
that is, 〈ξ|∗ = |ξ〉.This is Dirac’s bra-ket notation.
Also for an indexed subset {ξα}α∈A of H we will simply write |α〉 instead of |ξα〉.
Definition 1.1. Let H be a Hilbert space (not necessarily finite dimensional). Any vector in H is
denoted by |ξ〉 and any vector in H∗ is denoted by 〈η|.
Definition 1.2. For Hilbert space H, the action of 〈η| ∈ H∗ on |ξ〉 ∈ H is denoted by 〈η|ξ〉.
Definition 1.3. Let H1, H2 be Hilbert spaces. For 〈η| ∈ H∗1 , |ξ〉 ∈ H2, the operator |ξ〉〈η| ∈
Hom(H1, H2) is a rank one linear operator defined as |ξ〉〈η| (|ζ〉) = 〈η|ζ〉 |ξ〉.
Proposition 1.4. Let {|i〉}ni=1 be an orthonormal basis of H. Then

∑
i |i〉〈i| = I

Proposition 1.5. Let 〈η| ∈ H∗1 , |ξ〉 ∈ H2, A ∈ End(H2), where H1.H2 are finite dimensional Hilbert
spaces. Then

1. (|ξ〉〈η|)∗ = |η〉〈ξ|

2. (A |ξ〉)∗ = 〈ξ|A∗

3. Tr (|ξ〉〈η|) = 〈η|ξ〉
Definition 1.6. For |ξi〉 ∈ H, we denote

|ξ1〉 ⊗ |ξ2〉 ⊗ · · · ⊗ |ξn〉 =: |ξ1〉 |ξ2〉 . . . |ξn〉
=: |ξ1ξ2 . . . ξn〉

If H = C2, each ξi ∈ {0, 1}. In that case, we denote |ξ〉 := |ξ1ξ2 . . . ξn〉 where ξ =
∑n
i=1 2n−iξi.
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Definition 1.7. For |ξ〉 ∈ H, we denote |ξ〉⊗k := |ξ〉 ⊗ · · · ⊗ |ξ〉︸ ︷︷ ︸
k times

2 States and events

We will be making general definitions. The 2D Hilbert space C2 (and M2(C)) will be extensively
used for examples.

2.1 Introduction

Definition 2.1. A projection is a linear operator T ∈ End(H) such that T = T ∗ = T 2.

Exercise 1
Check the following properties of the tensor product:

1. (A⊗B)∗ = A∗ ⊗B∗

2. (A⊗B)t = At ⊗Bt

3. Tensor product of two unitary operators is unitary

4. Tensor product of two Hermitian operators is Hermitian

5. Tensor product of two non-negative operators is non-negative

6. Tensor product of two projections is a projection

Definition 2.2. A state is a linear functional ϕ : End(H)→ C such that ϕ(A∗A) ≥ 0 ∀ A ∈ End(H)
and ϕ(1) = 1 (1 is the identity operator).

Example. Fix ξ ∈ H, ‖ξ‖ = 1, the linear functional ϕ given by A
ϕ7→ 〈ξ|Aξ〉 is a state.

Definition 2.3. Let ξ ∈ H, ‖ξ‖ = 1. The vector state corresponding to ξ is the linear operator

ϕ ∈ End(H)∗ given by A
ϕ7→ 〈ξ|Aξ〉 ∀ A ∈ End(H).

Definition 2.4. A (quantum mechanical) event is a projection in End(H), where H is any Hilbert
space.

Definition 2.5. Two events E,F ∈ End(H) are said to be compatible iff they commute, that is
EF = FE.

Proposition 2.6. Let E ∈M2(C) be an event. Then ∃ a = (x, y, z) ∈ S2 ⊆ R3 such that the event

is given by E = Ea = 1
2

[
1 + z x− iy
x+ iy 1− z

]
.

Definition 2.7. We define the following matrices for (x, y, z) ∈ R3:

σ(x, y, z) =

[
z x− iy

x+ iy −z

]
σx = σ1 = σ(1, 0, 0)

σy = σ2 = σ(0, 1, 0)

σz = σ3 = σ(0, 0, 1)

σi are called the Pauli matrices.
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Exercise 2
Let 1 be the identity matrix of order 2 and × be the usual cross product on R3. In this exercise we
talk about events in M2(C). Verify the following:

1. Ea = 1
2 (1 + σ(a)) for a ∈ S2.

2. σ(a)σ(b) = 〈a|b〉1 + iσ(a× b) for a, b ∈ R3.

3. Ea + E−a = 1, EaE−a = 0 for a ∈ S2.

4. Let a, b ∈ S2. Ea and Eb are compatible iff a = ±b.

Exercise 3
Do you see the real projective plane RP2 from the previous exercise?

Proposition 2.8. 〈·|·〉Tr : End(H)×End(H)→ C given by 〈T |S〉Tr := Tr(T ∗S) is an inner product.

Theorem 2.9. Let ϕ : End(H)→ C be a state. Then ∃! ρ ∈ {χ ∈ End(H) | χ ≥ 0,Tr(χ) = 1} such
that ϕ(A) = Tr(ρA) ∀ A ∈ End(H).

Definition 2.10. The probability of a (quantum mechanical) event E with respect to state ϕ is
Probϕ(E) := ϕ(E)

Proposition 2.11. Let ρ ∈M2(C) so that Tr(ρ) = 1 and ρ ≥ 0 (non-negative definite). Then:

1. ρ is given by ρa = 1
2 (1 + σ(a)) for some a = (x, y, z) ∈ R3, ‖a‖ ≤ 1.

2. Probϕ(Eb)
(

= Tr(ρaEb)
)

= 1
2 (1 + 〈a|b〉) where ϕ is the state corresponding to ρa for some

a, b ∈ R3, ‖a‖ ≤ 1.

Definition 2.12. X ∈ End(H) is said to be an observable iff X∗ = X.

2.2 von Neumann’s collapse Postulate

Let X ∈ End(H) be a self adjoint operator (observable), and ρ ∈ End(H) a state with respect to
which all measurements will be made. Let the spectral decomposition (with respect to a given basis)

of X be X =
∑

λ∈σ(X)

λEλ. When X is measured with respect to ρ, it realizes an eigenvalue λ with

probability Tr(ρEλ) and the state collapses to ρ̃ =
EλρEλ
Tr(ρEλ)

.

3 Actual Quantum Computation (What we require)

Definition 3.1. A qubit is a vector state in C2.

Remark 3.2. Since a qubit ψ is a vector state, ψ = |ξ〉〈ξ| for some |ξ〉 ∈ H, ‖ξ‖ = 1. We will refer to
|ξ〉 as the qubit instead of ψ. We will denote |0〉 = (0, 1), |ξ〉 = (1, 0) ∈ C2. So a qubit would look
like a |0〉+ b |1〉 , |a|2 + |b|2 = 1, a, b ∈ C.

Remark 3.3. If a basis is not mentioned, measuring a qubit |ξ〉 means measuring the observable
X = 0 |0〉〈0|+ 1 |1〉〈1| with respect to the state |ξ〉〈ξ|.
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Exercise 4
Measuring ξ = a |0〉+ b |1〉 gives value 0 with probability |a|2 and value 1 with probability |b|2. Post

measurement, |ξ〉 collapses to
∣∣∣ξ̃〉 = |0〉 or

∣∣∣ξ̃〉 = |1〉 respectively.

Definition 3.4. A quantum gate is a unitary operator in End(H).

Remark 3.5. • 1−qubit quantum gate is a unitary operator in End(C2)

• n−qubit quantum gate is a unitary operator in End((C2)⊗n)

• An n−qubit quantum gate U1 ⊗ · · · ⊗ Un acts as

(⊗ni=1Ui) (⊗ni=1 |ξi〉) := ⊗ni=1 |Uiξi〉

4 Quantum entanglement

Definition 4.1. Let H1, H2 be two Hilbert spaces.
|ξ〉 ∈ H1 ⊗H2 is a product state iff ∃ |ξ1〉 ∈ H1, |ξ2〉 ∈ H2 such that |ξ〉 = |ξ1〉 ⊗ |ξ2〉.
|ξ〉 ∈ H1 ⊗H2 is an entangled state iff |ξ〉 is not a product state.

Example. The following are called the Bell states in C2 ⊗ C2:

• |Φ+〉 = 1√
2
(|00〉+ |11〉)

• |Φ−〉 = 1√
2
(|00〉 − |11〉)

• |Ψ+〉 = 1√
2
(|01〉+ |10〉)

• |Ψ−〉 = 1√
2
(|01〉 − |10〉)

The Bell states are entangled states. We will check that (the definition) for |Φ+〉. Suppose that
(a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉) = 1√

2
(|00〉+ |11〉) for some a, b, c, d ∈ C.

This would give us ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 = 1√
2
|00〉+ 1√

2
|11〉

On one hand ac = bd = 1√
2

=⇒ abcd = 1
2 and on the other hand, ad = bc = 0 =⇒ abcd = 0 which

is absurd!
The following exercise brings out the physical meaning of entangled states.

Exercise 5
Let |α〉 , |β〉 be an orthonormal basis of H = C2 and consider the observable X = 0 |α〉〈α|+ 1 |β〉〈β|.
Measuring X ⊗ 1 with respect to the Bell state |Φ+〉 forces the second qubit to collapse to the
conjugate of same state as the first qubit. Measuring with respect to |Ψ−〉 does the opposite. Try
for |Φ−〉 and |Ψ+〉.
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