QUANTUM COMPUTATION

Lecture 2

Nilava Metya
nilavam@cmi.ac.in

19 July 2020

Whether mentioned or not, we will assume H to be a finite dimensional Hilbert space over \mathbb{C}.

1 Notation

In quantum computation, we generally use the finite dimensional Hilbert space $H=\mathbb{C}^{n}$. Since this has a canonical basis, say $\left(\boldsymbol{e}_{i}\right)_{i=1}^{n}$, we can freely talk about a vector or linear operator interchangibly with their matrix forms. And this gives the natural isomorphism $\sum_{i=1}^{n} v_{i} \boldsymbol{e}_{i} \mapsto\left[\begin{array}{lll}v_{1}^{*} & \ldots & v_{n}^{*}\end{array}\right]$, thus H and H^{*} are conjugate linearly isomorphic. The image of a vector ξ, under the above isomorphism, is called its dual and denoted by ξ^{*} in mathematics. However for the sake of quantum mechanics, we will denote the vector by $|\xi\rangle$ (read as ket of $x i$) and its dual is denoted by $\langle\xi|$ (read as bra of $x i$), that is, $\left\langle\left.\xi\right|^{*}=\mid \xi\right\rangle$. This is Dirac's bra-ket notation.
Also for an indexed subset $\left\{\xi_{\alpha}\right\}_{\alpha \in A}$ of H we will simply write $|\alpha\rangle$ instead of $\left|\xi_{\alpha}\right\rangle$.
Definition 1.1. Let H be a Hilbert space (not necessarily finite dimensional). Any vector in H is denoted by $|\xi\rangle$ and any vector in H^{*} is denoted by $\langle\eta|$.
Definition 1.2. For Hilbert space H, the action of $\langle\eta| \in H^{*}$ on $|\xi\rangle \in H$ is denoted by $\langle\eta \mid \xi\rangle$.
Definition 1.3. Let H_{1}, H_{2} be Hilbert spaces. For $\langle\eta| \in H_{1}^{*},|\xi\rangle \in H_{2}$, the operator $|\xi\rangle\langle\eta| \in$ $\operatorname{Hom}\left(H_{1}, H_{2}\right)$ is a rank one linear operator defined as $|\xi\rangle\langle\eta|(|\zeta\rangle)=\langle\eta \mid \zeta\rangle|\xi\rangle$.
Proposition 1.4. Let $\{|i\rangle\}_{i=1}^{n}$ be an orthonormal basis of H. Then $\sum_{i}|i\rangle\langle i|=I$
Proposition 1.5. Let $\langle\eta| \in H_{1}^{*},|\xi\rangle \in H_{2}, A \in \operatorname{End}\left(H_{2}\right)$, where H_{1}. H_{2} are finite dimensional Hilbert spaces. Then

1. $(|\xi\rangle\langle\eta|)^{*}=|\eta\rangle\langle\xi|$
2. $(A|\xi\rangle)^{*}=\langle\xi| A^{*}$
3. $\operatorname{Tr}(|\xi\rangle\langle\eta|)=\langle\eta \mid \xi\rangle$

Definition 1.6. For $\left|\xi_{i}\right\rangle \in H$, we denote

$$
\begin{aligned}
\left|\xi_{1}\right\rangle \otimes\left|\xi_{2}\right\rangle \otimes \cdots \otimes\left|\xi_{n}\right\rangle & =:\left|\xi_{1}\right\rangle\left|\xi_{2}\right\rangle \ldots\left|\xi_{n}\right\rangle \\
& =:\left|\xi_{1} \xi_{2} \ldots \xi_{n}\right\rangle
\end{aligned}
$$

If $H=\mathbb{C}^{2}$, each $\xi_{i} \in\{0,1\}$. In that case, we denote $|\boldsymbol{\xi}\rangle:=\left|\xi_{1} \xi_{2} \ldots \xi_{n}\right\rangle$ where $\boldsymbol{\xi}=\sum_{i=1}^{n} 2^{n-i} \xi_{i}$.

Definition 1.7. For $|\xi\rangle \in H$, we denote $|\xi\rangle^{\otimes k}:=\underbrace{|\xi\rangle \otimes \cdots \otimes|\xi\rangle}_{k \text { times }}$

2 States and events

We will be making general definitions. The $2 D$ Hilbert space \mathbb{C}^{2} (and $M_{2}(\mathbb{C})$) will be extensively used for examples.

2.1 Introduction

Definition 2.1. A projection is a linear operator $T \in \operatorname{End}(H)$ such that $T=T^{*}=T^{2}$.
Exercise 1
Check the following properties of the tensor product:

1. $(A \otimes B)^{*}=A^{*} \otimes B^{*}$
2. $(A \otimes B)^{t}=A^{t} \otimes B^{t}$
3. Tensor product of two unitary operators is unitary
4. Tensor product of two Hermitian operators is Hermitian
5. Tensor product of two non-negative operators is non-negative
6. Tensor product of two projections is a projection

Definition 2.2. A state is a linear functional $\varphi: \operatorname{End}(H) \rightarrow \mathbb{C}$ such that $\varphi\left(A^{*} A\right) \geq 0 \forall A \in \operatorname{End}(H)$ and $\varphi(\mathbf{1})=1$ ($\mathbf{1}$ is the identity operator).
Example. Fix $\xi \in H,\|\xi\|=1$, the linear functional φ given by $A \stackrel{\varphi}{\mapsto}\langle\xi \mid A \xi\rangle$ is a state.
Definition 2.3. Let $\xi \in H,\|\xi\|=1$. The vector state corresponding to ξ is the linear operator $\varphi \in \operatorname{End}(H)^{*}$ given by $A \stackrel{\varphi}{\mapsto}\langle\xi \mid A \xi\rangle \forall A \in \operatorname{End}(H)$.

Definition 2.4. A (quantum mechanical) event is a projection in $\operatorname{End}(H)$, where H is any Hilbert space.
Definition 2.5. Two events $E, F \in \operatorname{End}(H)$ are said to be compatible iff they commute, that is $E F=F E$.

Proposition 2.6. Let $E \in M_{2}(\mathbb{C})$ be an event. Then $\exists \boldsymbol{a}=(x, y, z) \in S^{2} \subseteq \mathbb{R}^{3}$ such that the event is given by $E=E_{\boldsymbol{a}}=\frac{1}{2}\left[\begin{array}{cc}1+z & x-i y \\ x+i y & 1-z\end{array}\right]$.
Definition 2.7. We define the following matrices for $(x, y, z) \in \mathbb{R}^{3}$:

$$
\begin{aligned}
\sigma(x, y, z) & =\left[\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right] \\
\sigma_{x} & =\sigma_{1}=\sigma(1,0,0) \\
\sigma_{y} & =\sigma_{2}=\sigma(0,1,0) \\
\sigma_{z} & =\sigma_{3}=\sigma(0,0,1)
\end{aligned}
$$

σ_{i} are called the Pauli matrices.

ExErcise 2
Let 1 be the identity matrix of order 2 and \times be the usual cross product on \mathbb{R}^{3}. In this exercise we talk about events in $M_{2}(\mathbb{C})$. Verify the following:

1. $E_{\boldsymbol{a}}=\frac{1}{2}(\mathbf{1}+\sigma(\boldsymbol{a}))$ for $\boldsymbol{a} \in S^{2}$.
2. $\sigma(\boldsymbol{a}) \sigma(\boldsymbol{b})=\langle a \mid b\rangle \mathbf{1}+i \sigma(\boldsymbol{a} \times \boldsymbol{b})$ for $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}$.
3. $E_{\boldsymbol{a}}+E_{-\boldsymbol{a}}=1, E_{\boldsymbol{a}} E_{-\boldsymbol{a}}=0$ for $\boldsymbol{a} \in S^{2}$.
4. Let $\boldsymbol{a}, \boldsymbol{b} \in S^{2} . E_{\boldsymbol{a}}$ and $E_{\boldsymbol{b}}$ are compatible iff $\boldsymbol{a}= \pm \boldsymbol{b}$.

Exercise 3

Do you see the real projective plane $\mathbb{R P}^{2}$ from the previous exercise?
Proposition 2.8. $\langle\cdot \mid \cdot\rangle_{\mathrm{Tr}}: \operatorname{End}(H) \times \operatorname{End}(H) \rightarrow \mathbb{C}$ given by $\langle T \mid S\rangle_{\mathrm{Tr}}:=\operatorname{Tr}\left(T^{*} S\right)$ is an inner product.
Theorem 2.9. Let $\varphi: \operatorname{End}(H) \rightarrow \mathbb{C}$ be a state. Then $\exists!\rho \in\{\chi \in \operatorname{End}(H) \mid \chi \geq 0, \operatorname{Tr}(\chi)=1\}$ such that $\varphi(A)=\operatorname{Tr}(\rho A) \forall A \in \operatorname{End}(H)$.

Definition 2.10. The probability of a (quantum mechanical) event E with respect to state φ is $\operatorname{Prob}_{\varphi}(E):=\varphi(E)$

Proposition 2.11. Let $\rho \in M_{2}(\mathbb{C})$ so that $\operatorname{Tr}(\rho)=1$ and $\rho \geq 0$ (non-negative definite). Then:

1. ρ is given by $\rho_{\boldsymbol{a}}=\frac{1}{2}(1+\sigma(\boldsymbol{a}))$ for some $\boldsymbol{a}=(x, y, z) \in \mathbb{R}^{3},\|\boldsymbol{a}\| \leq 1$.
2. $\operatorname{Prob}_{\varphi}\left(E_{\boldsymbol{b}}\right)\left(=\operatorname{Tr}\left(\rho_{\boldsymbol{a}} E_{\boldsymbol{b}}\right)\right)=\frac{1}{2}(1+\langle\boldsymbol{a} \mid \boldsymbol{b}\rangle)$ where φ is the state corresponding to $\rho_{\boldsymbol{a}}$ for some $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3},\|\boldsymbol{a}\| \leq 1$.

Definition 2.12. $X \in \operatorname{End}(H)$ is said to be an observable iff $X^{*}=X$.

2.2 von Neumann's collapse Postulate

Let $X \in \operatorname{End}(H)$ be a self adjoint operator (observable), and $\rho \in \operatorname{End}(H)$ a state with respect to which all measurements will be made. Let the spectral decomposition (with respect to a given basis) of X be $X=\sum_{\lambda \in \sigma(X)} \lambda E_{\lambda}$. When X is measured with respect to ρ, it realizes an eigenvalue λ with probability $\operatorname{Tr}\left(\rho E_{\lambda}\right)$ and the state collapses to $\tilde{\rho}=\frac{E_{\lambda} \rho E_{\lambda}}{\operatorname{Tr}\left(\rho E_{\lambda}\right)}$.

3 Actual Quantum Computation (What we require)

Definition 3.1. A qubit is a vector state in \mathbb{C}^{2}.
Remark 3.2. Since a qubit ψ is a vector state, $\psi=|\xi\rangle\langle\xi|$ for some $|\xi\rangle \in H,\|\xi\|=1$. We will refer to $|\xi\rangle$ as the qubit instead of ψ. We will denote $|0\rangle=(0,1),|\xi\rangle=(1,0) \in \mathbb{C}^{2}$. So a qubit would look like $a|0\rangle+b|1\rangle,|a|^{2}+|b|^{2}=1, a, b \in \mathbb{C}$.
Remark 3.3. If a basis is not mentioned, measuring a qubit $|\xi\rangle$ means measuring the observable $X=0|0\rangle\langle 0|+1|1\rangle\langle 1|$ with respect to the state $|\xi\rangle\langle\xi|$.

ExERCISE 4

Measuring $\xi=a|0\rangle+b|1\rangle$ gives value 0 with probability $|a|^{2}$ and value 1 with probability $|b|^{2}$. Post measurement, $|\xi\rangle$ collapses to $|\tilde{\xi}\rangle=|0\rangle$ or $|\tilde{\xi}\rangle=|1\rangle$ respectively.

Definition 3.4. A quantum gate is a unitary operator in $\operatorname{End}(H)$.
Remark 3.5. - 1 -qubit quantum gate is a unitary operator in $\operatorname{End}\left(\mathbb{C}^{2}\right)$

- n-qubit quantum gate is a unitary operator in $\operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$
- An n-qubit quantum gate $U_{1} \otimes \cdots \otimes U_{n}$ acts as

$$
\left(\otimes_{i=1}^{n} U_{i}\right)\left(\otimes_{i=1}^{n}\left|\xi_{i}\right\rangle\right):=\otimes_{i=1}^{n}\left|U_{i} \xi_{i}\right\rangle
$$

4 Quantum entanglement

Definition 4.1. Let H_{1}, H_{2} be two Hilbert spaces.
$|\xi\rangle \in H_{1} \otimes H_{2}$ is a product state iff $\exists\left|\xi_{1}\right\rangle \in H_{1},\left|\xi_{2}\right\rangle \in H_{2}$ such that $|\xi\rangle=\left|\xi_{1}\right\rangle \otimes\left|\xi_{2}\right\rangle$.
$|\xi\rangle \in H_{1} \otimes H_{2}$ is an entangled state iff $|\xi\rangle$ is not a product state.
Example. The following are called the Bell states in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$:

- $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- $\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$
- $\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$
- $\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$

The Bell states are entangled states. We will check that (the definition) for $\left|\Phi^{+}\right\rangle$. Suppose that $(a|0\rangle+b|1\rangle) \otimes(c|0\rangle+d|1\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ for some $a, b, c, d \in \mathbb{C}$.
This would give us $a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$
On one hand $a c=b d=\frac{1}{\sqrt{2}} \Longrightarrow a b c d=\frac{1}{2}$ and on the other hand, $a d=b c=0 \Longrightarrow a b c d=0$ which is absurd!
The following exercise brings out the physical meaning of entangled states.

Exercise 5

Let $|\alpha\rangle,|\beta\rangle$ be an orthonormal basis of $H=\mathbb{C}^{2}$ and consider the observable $X=0|\alpha\rangle\langle\alpha|+1|\beta\rangle\langle\beta|$. Measuring $X \otimes \mathbf{1}$ with respect to the Bell state $\left|\Phi^{+}\right\rangle$forces the second qubit to collapse to the conjugate of same state as the first qubit. Measuring with respect to $\left|\Psi^{-}\right\rangle$does the opposite. Try for $\left|\Phi^{-}\right\rangle$and $\left|\Psi^{+}\right\rangle$.

