QUANTUM COMPUTATION

Lecture 2

Nilava Metya nilavam@cmi.ac.in

19 July 2020

Whether mentioned or not, we will assume H to be a finite dimensional Hilbert space over \mathbb{C} .

1 Notation

In quantum computation, we generally use the finite dimensional Hilbert space $H = \mathbb{C}^n$. Since this has a canonical basis, say $(e_i)_{i=1}^n$, we can freely talk about a vector or linear operator interchangibly

with their matrix forms. And this gives the natural isomorphism $\sum_{i=1}^{n} v_i e_i \mapsto \begin{bmatrix} v_1^* & \dots & v_n^* \end{bmatrix}$, thus H

and H^* are conjugate linearly isomorphic. The image of a vector ξ , under the above isomorphism, is called its dual and denoted by ξ^* in mathematics. However for the sake of quantum mechanics, we will denote the vector by $|\xi\rangle$ (read as *ket of xi*) and its dual is denoted by $\langle\xi|$ (read as *bra of xi*), that is, $\langle\xi|^* = |\xi\rangle$. This is Dirac's bra-ket notation.

Also for an indexed subset $\{\xi_{\alpha}\}_{\alpha \in A}$ of H we will simply write $|\alpha\rangle$ instead of $|\xi_{\alpha}\rangle$.

Definition 1.1. Let *H* be a Hilbert space (not necessarily finite dimensional). Any vector in *H* is denoted by $|\xi\rangle$ and any vector in H^* is denoted by $\langle \eta |$.

Definition 1.2. For Hilbert space H, the action of $\langle \eta | \in H^*$ on $|\xi\rangle \in H$ is denoted by $\langle \eta | \xi \rangle$.

Definition 1.3. Let H_1, H_2 be Hilbert spaces. For $\langle \eta | \in H_1^*, |\xi \rangle \in H_2$, the operator $|\xi \rangle \langle \eta | \in H_1(H_1, H_2)$ is a rank one linear operator defined as $|\xi \rangle \langle \eta | (|\zeta \rangle) = \langle \eta |\zeta \rangle |\xi \rangle$.

Proposition 1.4. Let $\{|i\rangle\}_{i=1}^n$ be an orthonormal basis of H. Then $\sum_i |i\rangle\langle i| = I$

Proposition 1.5. Let $\langle \eta | \in H_1^*, | \xi \rangle \in H_2, A \in End(H_2)$, where $H_1.H_2$ are finite dimensional Hilbert spaces. Then

- 1. $(|\xi\rangle\langle\eta|)^* = |\eta\rangle\langle\xi|$
- 2. $(A |\xi\rangle)^* = \langle \xi | A^*$
- 3. $Tr(|\xi\rangle\langle\eta|) = \langle\eta|\xi\rangle$

Definition 1.6. For $|\xi_i\rangle \in H$, we denote

$$\begin{aligned} |\xi_1\rangle \otimes |\xi_2\rangle \otimes \cdots \otimes |\xi_n\rangle &=: |\xi_1\rangle |\xi_2\rangle \dots |\xi_n\rangle \\ &=: |\xi_1\xi_2\dots\xi_n\rangle \end{aligned}$$

If $H = \mathbb{C}^2$, each $\xi_i \in \{0, 1\}$. In that case, we denote $|\boldsymbol{\xi}\rangle := |\xi_1 \xi_2 \dots \xi_n\rangle$ where $\boldsymbol{\xi} = \sum_{i=1}^n 2^{n-i} \xi_i$.

Definition 1.7. For $|\xi\rangle \in H$, we denote $|\xi\rangle^{\otimes k} := \underbrace{|\xi\rangle \otimes \cdots \otimes |\xi\rangle}_{k \text{ times}}$

2 States and events

We will be making general definitions. The 2D Hilbert space \mathbb{C}^2 (and $M_2(\mathbb{C})$) will be extensively used for examples.

2.1 Introduction

Definition 2.1. A projection is a linear operator $T \in End(H)$ such that $T = T^* = T^2$.

Exercise 1

Check the following properties of the tensor product:

- 1. $(A \otimes B)^* = A^* \otimes B^*$
- 2. $(A \otimes B)^t = A^t \otimes B^t$
- 3. Tensor product of two unitary operators is unitary
- 4. Tensor product of two Hermitian operators is Hermitian
- 5. Tensor product of two non-negative operators is non-negative
- 6. Tensor product of two projections is a projection

Definition 2.2. A state is a linear functional φ : End $(H) \to \mathbb{C}$ such that $\varphi(A^*A) \ge 0 \forall A \in \text{End}(H)$ and $\varphi(\mathbf{1}) = 1$ (**1** is the identity operator).

EXAMPLE. Fix $\xi \in H$, $\|\xi\| = 1$, the linear functional φ given by $A \stackrel{\varphi}{\mapsto} \langle \xi | A\xi \rangle$ is a state.

Definition 2.3. Let $\xi \in H$, $\|\xi\| = 1$. The vector state corresponding to ξ is the linear operator $\varphi \in \operatorname{End}(H)^*$ given by $A \stackrel{\varphi}{\mapsto} \langle \xi | A \xi \rangle \quad \forall A \in \operatorname{End}(H)$.

Definition 2.4. A (quantum mechanical) *event* is a projection in End(H), where H is any Hilbert space.

Definition 2.5. Two events $E, F \in End(H)$ are said to be *compatible* iff they commute, that is EF = FE.

Proposition 2.6. Let $E \in M_2(\mathbb{C})$ be an event. Then $\exists a = (x, y, z) \in S^2 \subseteq \mathbb{R}^3$ such that the event is given by $E = E_a = \frac{1}{2} \begin{bmatrix} 1+z & x-iy \\ x+iy & 1-z \end{bmatrix}$.

Definition 2.7. We define the following matrices for $(x, y, z) \in \mathbb{R}^3$:

$$\sigma(x, y, z) = \begin{bmatrix} z & x - iy \\ x + iy & -z \end{bmatrix}$$
$$\sigma_x = \sigma_1 = \sigma(1, 0, 0)$$
$$\sigma_y = \sigma_2 = \sigma(0, 1, 0)$$
$$\sigma_z = \sigma_3 = \sigma(0, 0, 1)$$

 σ_i are called the *Pauli matrices*.

EXERCISE 2

Let 1 be the identity matrix of order 2 and \times be the usual cross product on \mathbb{R}^3 . In this exercise we talk about events in $M_2(\mathbb{C})$. Verify the following:

- 1. $E_{a} = \frac{1}{2}(1 + \sigma(a))$ for $a \in S^{2}$.
- 2. $\sigma(\boldsymbol{a})\sigma(\boldsymbol{b}) = \langle a|b\rangle \mathbf{1} + i\sigma(\boldsymbol{a} \times \boldsymbol{b}) \text{ for } \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^3.$
- 3. $E_{a} + E_{-a} = 1, E_{a}E_{-a} = 0$ for $a \in S^{2}$.
- 4. Let $\boldsymbol{a}, \boldsymbol{b} \in S^2$. $E_{\boldsymbol{a}}$ and $E_{\boldsymbol{b}}$ are compatible iff $\boldsymbol{a} = \pm \boldsymbol{b}$.

Exercise 3

Do you see the real projective plane \mathbb{RP}^2 from the previous exercise?

Proposition 2.8. $\langle \cdot | \cdot \rangle_{\mathrm{Tr}} : End(H) \times End(H) \to \mathbb{C}$ given by $\langle T|S \rangle_{\mathrm{Tr}} := \mathrm{Tr}(T^*S)$ is an inner product.

Theorem 2.9. Let φ : End(H) $\rightarrow \mathbb{C}$ be a state. Then $\exists ! \ \rho \in \{\chi \in End(H) \mid \chi \geq 0, \operatorname{Tr}(\chi) = 1\}$ such that $\varphi(A) = \operatorname{Tr}(\rho A) \ \forall \ A \in End(H)$.

Definition 2.10. The probability of a (quantum mechanical) event E with respect to state φ is $\operatorname{Prob}_{\varphi}(E) := \varphi(E)$

Proposition 2.11. Let $\rho \in M_2(\mathbb{C})$ so that $\operatorname{Tr}(\rho) = 1$ and $\rho \geq 0$ (non-negative definite). Then:

- 1. ρ is given by $\rho_{\boldsymbol{a}} = \frac{1}{2}(1 + \sigma(\boldsymbol{a}))$ for some $\boldsymbol{a} = (x, y, z) \in \mathbb{R}^3, \|\boldsymbol{a}\| \leq 1$.
- 2. $\operatorname{Prob}_{\varphi}(E_{\mathbf{b}}) \Big(= \operatorname{Tr}(\rho_{\mathbf{a}} E_{\mathbf{b}}) \Big) = \frac{1}{2} (1 + \langle \mathbf{a} | \mathbf{b} \rangle)$ where φ is the state corresponding to $\rho_{\mathbf{a}}$ for some $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3, \|\mathbf{a}\| \leq 1.$

Definition 2.12. $X \in End(H)$ is said to be an *observable* iff $X^* = X$.

2.2 von Neumann's collapse Postulate

Let $X \in \text{End}(H)$ be a self adjoint operator (observable), and $\rho \in \text{End}(H)$ a state with respect to which all measurements will be made. Let the spectral decomposition (with respect to a given basis) of X be $X = \sum_{\lambda \in \sigma(X)} \lambda E_{\lambda}$. When X is measured with respect to ρ , it realizes an eigenvalue λ with

probability $\operatorname{Tr}(\rho E_{\lambda})$ and the state collapses to $\tilde{\rho} = \frac{E_{\lambda}\rho E_{\lambda}}{\operatorname{Tr}(\rho E_{\lambda})}$.

3 Actual Quantum Computation (What we require)

Definition 3.1. A *qubit* is a vector state in \mathbb{C}^2 .

Remark 3.2. Since a qubit ψ is a vector state, $\psi = |\xi\rangle\langle\xi|$ for some $|\xi\rangle \in H$, $||\xi|| = 1$. We will refer to $|\xi\rangle$ as the qubit instead of ψ . We will denote $|0\rangle = (0,1), |\xi\rangle = (1,0) \in \mathbb{C}^2$. So a qubit would look like $a |0\rangle + b |1\rangle, |a|^2 + |b|^2 = 1, a, b \in \mathbb{C}$.

Remark 3.3. If a basis is not mentioned, *measuring* a qubit $|\xi\rangle$ means measuring the observable $X = 0 |0\rangle\langle 0| + 1 |1\rangle\langle 1|$ with respect to the state $|\xi\rangle\langle\xi|$.

EXERCISE 4

Measuring $\xi = a |0\rangle + b |1\rangle$ gives value 0 with probability $|a|^2$ and value 1 with probability $|b|^2$. Post measurement, $|\xi\rangle$ collapses to $\left|\tilde{\xi}\right\rangle = |0\rangle$ or $\left|\tilde{\xi}\right\rangle = |1\rangle$ respectively.

Definition 3.4. A quantum gate is a unitary operator in End(H).

• 1-qubit quantum gate is a unitary operator in $\operatorname{End}(\mathbb{C}^2)$ Remark 3.5.

- *n*-qubit quantum gate is a unitary operator in $\operatorname{End}((\mathbb{C}^2)^{\otimes n})$
- An *n*-qubit quantum gate $U_1 \otimes \cdots \otimes U_n$ acts as

 $\left(\otimes_{i=1}^{n} U_{i}\right) \left(\otimes_{i=1}^{n} |\xi_{i}\rangle\right) := \otimes_{i=1}^{n} |U_{i}\xi_{i}\rangle$

Quantum entanglement 4

Definition 4.1. Let H_1, H_2 be two Hilbert spaces.

 $|\xi\rangle \in H_1 \otimes H_2$ is a product state iff $\exists |\xi_1\rangle \in H_1, |\xi_2\rangle \in H_2$ such that $|\xi\rangle = |\xi_1\rangle \otimes |\xi_2\rangle$.

 $|\xi\rangle \in H_1 \otimes H_2$ is an *entangled state* iff $|\xi\rangle$ is not a product state.

EXAMPLE. The following are called the Bell states in $\mathbb{C}^2 \otimes \mathbb{C}^2$:

- $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- $|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle |11\rangle)$
- $|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$
- $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$

The Bell states are entangled states. We will check that (the definition) for $|\Phi^+\rangle$. Suppose that $(a |0\rangle + b |1\rangle) \otimes (c |0\rangle + d |1\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ for some $a, b, c, d \in \mathbb{C}$.

This would give us $ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$ On one hand $ac = bd = \frac{1}{\sqrt{2}} \implies abcd = \frac{1}{2}$ and on the other hand, $ad = bc = 0 \implies abcd = 0$ which is absurd!

The following exercise brings out the physical meaning of entangled states.

EXERCISE 5

Let $|\alpha\rangle$, $|\beta\rangle$ be an orthonormal basis of $H = \mathbb{C}^2$ and consider the observable $X = 0 |\alpha\rangle\langle\alpha| + 1 |\beta\rangle\langle\beta|$. Measuring $X \otimes \mathbf{1}$ with respect to the Bell state $|\Phi^+\rangle$ forces the second qubit to collapse to the conjugate of same state as the first qubit. Measuring with respect to $|\Psi^{-}\rangle$ does the opposite. Try for $|\Phi^-\rangle$ and $|\Psi^+\rangle$.