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1 Basic notions

Though we will assume some familiarity with linear algebra, we will review the basic concepts in
this section.
Let V be a vector space over a field K.

Definition 1.1. For a set S ⊆ V define its span 〈S〉 to be the set of all linear combinations of the
elements of S.

Proposition 1.2. For S ⊆ V , 〈S〉 is the smallest subspace of V that contains S.

Definition 1.3. A set S ⊆ V is said to be spanning iff every element in V can be written as a linear
combination of finitely many elements in S. We then write 〈S〉 = V and say S spans V .

Example. S = V is a spanning set of V .

Example. S = Z is a spanning set of V = R with K = R.

Definition 1.4. We say V is finite dimensional over K iff it contains a finite spanning set.

Example. V = R2 is a finite dimensional vector space over K = R with S = {(0, 1), (1, 0), (1, 1)} so
that if (a, b) ∈ V then (a, b) = (b− a)(0, 1) + a(1, 1)

Definition 1.5. A finite set L ⊆ V is said to be linearly independent in V iff there is no non-trivial
solution to

∑k
i=1 λivi = 0 (λi ∈ K,vi ∈ L).

Exercise 1
Any subset of a finite linearly independent set is linearly independent.

Definition 1.6. A set L ⊆ V is said to be linearly independent in V iff every finite subset of L is
linearly independent.

Definition 1.7. A set X ⊆ V is said to be linearly dependent if it is not linearly independent, that
is, there is a finite subset Y ⊆ X and λy ∈ K (y ∈ Y ), not all 0 such that

∑
y∈Y λyy = 0.

Example. In V = R2 the set L = {(0, 1)} is linearly independent but X = {(1, 0), (0, 1), (1, 1)} is
linearly dependent.
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Definition 1.8. A set B ⊆ V is said to be a basis of V iff B is linearly independent and 〈B〉 = V .

Example. For V = R2, the set B1 = {(1, 0), (0, 1)} is a basis. A different basis would be B2 =
{(1, 1), (0, 1)}.

Example. For V = R[x], L = {1, x5} is linearly independent and B = {xk : k ∈ Z≥0} is a basis.

Theorem 1.9. Let V be a K−vector space and B ⊆ V . The following are equivalent:

1. B is a maximal linearly independent set in V

2. B is a minimal spanning set in V

3. B is linearly independent and spanning in V

4. Every v ∈ V is uniquely expressible as v =
∑n
i=1 λivi for some n ∈ Z≥0,vi ∈ B, λi ∈ K

Lemma 1.10. Let V be a finite dimensional K−vector space and let L ⊆ S ⊆ V be linearly inde-
pendent and spanning. There is a basis B ⊆ V such that L ⊆ B ⊆ S.

Proposition 1.11. Every basis of a finite dimensional vector space V has the same cardinality and
denote it by dimV .

Definition 1.12. The cardinality of a basis is called the dimension of the vector space.

Example. The dimension of V = R2 is 2.

Definition 1.13. For K−vector spaces V,W , a map T : V →W is said to be linear iff T (v+λv) =
T (v) + λT (v) for each u,v ∈ V, λ ∈ K.
In case K = C, we say T : U → V is conjugate-linear iff T (v + λv) = T (v) + λT (v) for each
u,v ∈ V, λ ∈ K.

Definition 1.14. For K−vector spaces V,W define HomK(V,W ) := {T : V →W | T is linear} and
EndK(V ) := HomK(V, V ).

Definition 1.15. T ∈ EndK(V ) is said to be diagonalizable if there exists a basis B of V such that
each v ∈ B is an eigenvector of T .

Definition 1.16. Two K−vector spaces U, V are said to be isomorphic iff ∃ T ∈ Hom(U, V ) (or ∃
conjugate-linear T : U → V , in case K = C) such that T is a bijection and write U ∼= V .

Definition 1.17. Let V,W be finite dimensional K−vector spaces and let T ∈ HomK(V,W ). Fix
ordered bases B1 = (u1, . . . ,un),B2 = (v1, . . . ,vm) of V,W respectively. Then we will have unique
λij ∈ K satisfying T (ui) =

∑m
j=1 λijvj for each i ∈ [n], j ∈ [m]. The matrix [T ]B1,B2 := [(λij)] is

called the matrix of T with respect to B1,B2.
If V = W and B1 = B2 = B then we write [T ]B := [T ]B,B and call it the matrix of T with

respect to B.

Exercise 2
For each pair of bases B1,B2 of finite dimensional K−vector space V,W (respectively) there is
an isomorphism HomK(V,W ) ∼= Mm×n(K) where n = dimV,m = dimW , given by the above
correspondence.

Exercise 3
Let S : U → V, T : V → W be linear operators on finite dimensional K−vector spaces U, V,W and
fix (ordered) bases B1,B2,B3 respectively. Then

[TS]B1,B3
= [T ]B2,B3

[S]B1,B2
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2 Hilbert spaces

For the sake of this seminar, we will mostly look at complex vector spaces with inner products.
Another common notation we will use is x∗ = x for x ∈ C.

In quantum mechanics, a Hilbert space is the same as a complex inner product space. We will
restrict ourselves to finite dimensional Hilbert spaces at least for the next few talks, if not all.

2.1 Inner products

Definition 2.1. An inner product on a C−vector space V is a function 〈·|·〉 : V ×V → C satisfying
the following:

1. 〈x|x〉 ≥ 0 ∀ x ∈ V with equality iff x = 0

2. 〈x|u + v〉 = 〈x|u〉+ 〈x|u〉 ∀ x,u,v ∈ V

3. 〈x|y〉 = 〈y|x〉∗

Definition 2.2. Let H be a Hilbert space. The norm of u ∈ H is defined as ‖u‖ :=
√
〈u|u〉.

Theorem 2.3 (Cauchy Schwarz inequality). Let H be a Hilbert space. For any vectors u,v ∈ H
we have | 〈u|v〉 |2 ≤ 〈u|u〉 〈v|v〉

Definition 2.4. u,v in Hilbert space H are said to be orthogonal iff 〈u|v〉 = 0. We write u ⊥ v.

Definition 2.5. Let H be a finite dimensional Hilbert space and B = (ξi)
n
i=1 be a basis of H. B

is said to be an orthogonal basis (of H) iff 〈ξi|ξj〉 = δij ∀ i, j ∈ [n]. B is said to be an orthonormal
basis (of H) iff B is an orthogonal basis and ‖ξk‖ = 1 ∀ k ∈ [n].

Theorem 2.6 (Gram-Schmidt). Every finite dimensional Hilbert space has an orthonormal basis.

Definition 2.7. Let H be a Hilbert space and V be a subspace of H. The orthogonal complement
of V is defined as V ⊥ := {u ∈ H | u ⊥ v ∀ v ∈ V }.

Lemma 2.8. Let V be a subspace of a finite dimensional Hilbert space H. Then H = V ⊕ V ⊥.

Definition 2.9. For an inner product space V , an operator T ∈ End(V ) is said to be non-negative
definite if 〈Tu|u〉 ≥ 0 ∀ u ∈ V and write T ≥ 0. We sometimes call such operators simply non-
negative.

2.2 Dual spaces and the adjoint operator

Definition 2.10. For a K−vector space V define its dual space as V ∗ := {ϕ : V → K | ϕ is linear}.

Theorem 2.11 (Riesz representation theorem). Let H be a finite dimensional Hilbert space and
ϕ ∈ H∗. Then there is a ξ ∈ H such that ϕ(η) = 〈ξ|η〉 for each η ∈ H.

Exercise 4
Let H be a finite dimensional Hilbert space. There is a natural (conjugate linear) isomorphism
ξ 7→ 〈ξ|·〉 = (η 7→ 〈ξ|η〉)

Exercise 5
Let H be a finite dimensional Hilbert space and T ∈ EndC(H). Then there is a unique T ∗ ∈ EndC(H)
such that 〈ξ|Tη〉 = 〈T ∗ξ|η〉.
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Definition 2.12. Let T and T ∗ be as above. Then T ∗ is called the adjoint of T .

Exercise 6
The adjoint operator T

∗7→ T ∗ is conjugate linear.

Exercise 7
T = T ∗∗ := (T ∗)

∗
for every T ∈ EndC(H), where H is a finite dimensional Hilbert space.

Proposition 2.13. Let B = (ei)
n
i=1 be an ordered basis of a finite dimensional Hilbert space H.

Then [T ∗]B = [T ]
t
B.

Definition 2.14. Let H be a Hilbert space. A linear operator T ∈ EndC(H) is said to be self-adjoint
or hermitian iff T = T ∗.

Exercise 8
Let B be an orthonormal basis of Hilbert space H and let T ∈ EndC(H). T is self adjoint iff [T ]B
is equal to its conjugate transpose.

Exercise 9
All eigenvalues of a self-adjoint linear operator on a finite dimensional Hilbert space are real.

Definition 2.15. Let H be a finite dimensional Hilbert space. A linear operator T ∈ End(H) is
said to be unitary iff TT ∗ = T ∗T = I.

Theorem 2.16. Let H be a Hilbert space and T ∈ EndC(H) be self-adjoint. Then T is diagonalizable
(through an orthonormal basis of H).

3 Tensor products

3.1 An initial problem to consider

To motivate tensor products, we start with a problem where one might think of something similar
to tensor products in a natural way. Here is a way that leads to the notion of tensor products.

Let U, V,W be fintie dimensional K−vector spaces. Denote by B(U, V,W ) the vector space of
all bilinear maps U × V → W . A map χ : U × V → W is said to be bilinear if it is linear in both
arguments, that is, χ(u1 +λu2,v) = χ(u1,v)+λχ(u2,v) and χ(u,v1 +λv2) = χ(u,v1)+λχ(u,v2).

In case of linear maps, we know that if we choose a basis of the domain and specify the image of
all the basis vectors, it uniquely determines a linear map. We would like to know something similar
similar for bilinear maps: what is the ‘smallest’ information we need to uniquely determine a bilinear
map? One might say out loud, “Math is good!” and end up with a conjecture that it is enough to
specify the image of each (u,v) ∈ U ×V where u,v are basis vectors of U, V respectively. And that
turns out to be the answer! (Caution: Though clear, one must still check well-definedness). In fact,
we see that it is necessary and sufficient to specify dimU × dimV × dimW numbers to determine
the map χ uniquely.

We might ask what minimal set S ⊆ U × V would be good enough such that specifying χ
(
~t
)
,

for ~t ∈ S, would be enough information to uniquely determine χ.
Let’s take an example with U = V = R2,W = R. Let e1, e2 be the canonical basis of R2. Speci-

fying the images of B = {(e1, e1), (e2, e1), (e1, e2), (e2, e2)} would be enough to uniquely determine
χ. Well, it would also be uniquely determined by the vectors in D = {(e1, e1), (e2, e2), (e1 +e2, e1 +
e2), (e1 + e2, e1 + 2e2)}.
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But specifying the images of vectors in E = {(e1, e1), (e2, e2), (e1 +e2, e1 +e2), (e1 +e2, e1−e2)}
is not a good idea! c1 = χ(e1, e1) and c2 = χ(e2, e2) gives information, totally ‘unrealted’ from
each other. c3 = χ(e1 + e2, e1 + e2) gives new information: χ(e1 + e2, e1 + e2). But nothing new is
conveyed by χ(e1 − e2, e1 − e2) = 2c1 + 2c2 − c3. This suggests B,D are ‘like’ linearly independent
sets, but E is not. In fact, it also makes sense to say B,D are ‘like’ bases, in the sense that they
determine (analog of spanning) the bilinear map uniquely (analog of linear independence).

Exercise 10
Try out more examples with V = U = W = R.

But what we are trying to imply here is something independent of χ. Sure, these above four
vectors in E do not give you the entire information about χ. But, note that if one replaces χ with
any other bilinear map U × V →W , the statement still remains the same. Hence we want to make
sense of this ’linear independence’ so that it is independent of any bilinear map. One way could be to
exchange the roles of χ and (x,y). What I mean is: we declare (x,y) to be a function on a bilinear
map, say denoted by [x,y] and defined by [x,y] (φ) = φ(x,y) for each φ ∈ B(U, V,W ). And now we
see that it lives inside a vector space (perhaps a subspace of the vector space that we immediately
see from this discussion) and hence it makes sense to talk about span, linear independence and basis.
The vector space would be the space spanned by all functions [x,y], quotiented by the evaluation
map (restriction that the image of a bilinear map under [x,y] is the function evatuated at (x,y)).

3.2 Treat bilinear maps as two successive linear maps

Now for each u ∈ U , the map χu := χ(u, ·) = (v 7→ χ(u,v)) is linear. Similarly the map χ′v :=
χ(·,u) = (u 7→ χ(u,v)) is linear for each v ∈ V .

Clearly χu ∈ Hom(V,W ) ∀ u ∈ U and χ′v ∈ HomK(U,W ) ∀ v ∈ V . Now consider the homomor-

phisms ψ : U → Hom(V,W ) given by u
ψ7→ χu and ψ′ : V → Hom(U,W ) given by v

ψ′

7→ χv.
This suggests that B(U, V,W ) is somehow related to Hom(U,Hom(V,W )) because we have shown

a linear map, say Φ, given by χ
Φ7→ ψ′ = (u 7→ χ(u, ·)). The first isomorphism theorem could give us

some strong result if we could find the kernel of Φ. In fact, if Φ(χ) is the zero map, it follows that
χ(u, ·) is the zero operator for each u ∈ U and hence χ(u,v) is zero (in W ) for each u ∈ U,v ∈ V ,
which by definition, suggests that χ is the zero map. Hence, the kernel is trivial and gives us that
B(U, V,W ) ∼= Hom (U,Hom(V,W ))! One might as well say that B(U, V,W ) ∼= Hom (V,Hom(U,W )).

So the end result of this discussion is

B(U, V,W ) ∼= Hom (U,Hom(V,W )) ∼= Hom (V,Hom(U,W ))

3.3 Universal property and definining tensor product

Definition 3.1. Let U, V be vector spaces and ⊗ : U×V → T be a bilinear map, where T is another
vector space. We say that ⊗ has the universal property if it satisfies the following two conditions:

1. The vectors x⊗ y generate T (that is, 〈Im(⊗)〉 = T).

2. If ϕ : U ×V →W is a bilinear map (where W is a vector space) then there exists a linear map
T : T →W so that the following diagram commutes(that is, ϕ = T ◦ ⊗).
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U × V W

T

⊗
T

ϕ

Exercise 11
Show that the above two conditons is equivalent to the following single condition: For every bilinear
map ϕ : U × V →W , there exists a unique linear map T : T →W so that ϕ = T ◦ ⊗.

Lemma 3.2. The vector space T, described as above, exists and is unique.

Definition 3.3. The space T corresponding to U, V is called the tensor product of U and V and
denoted by U ⊗ V .

Exercise 12
Let U and V be finite dimensional C−vector spaces. Considering the map ϕ : U∗×V → Hom(U, V )
given by ϕ(x∗,y) = (t 7→ x∗(t)y), show that U∗ ⊗ V ∼= Hom(U, V )

Exercise 13
Tensor product is associative.

Exercise 14
Let H1 and H2 be finite dimensional Hilbert spaces. Consider the map ϕ : H1×H2 → Hom(H1, H2)
given by ϕ(ξ, η) = (α 7→ 〈ξ|α〉 η). Show thatH1⊗H2 is (conjugate linearly) isomorphic to Hom(H1, H2)

Example. 1. U∗ ⊗ V is the tensor popularly known as the space of linear operators U → V .

2. U∗ ⊗ V ∗ is the tensor popularly known as the space of bilinear forms U × V → K.

3. V ∗1 ⊗ · · · ⊗ V ∗n is the tensor popularly known as the space of n−forms V1 × · · · × Vn → K.

Definition 3.4. Let T ∈ End(H) for some finite dimensional Hilbert space H, and B = {ξi}ni=1 an
orthonormal basis. The trace of T with respect to B is given by TrB(T ) =

∑n
i=1 〈ξi|Tξi〉

Proposition 3.5. If B1 and B2 be orthonormal bases of finite dimensional Hilbert space H, and let
T ∈ End(H). Then TrB1

(T ) = TrB2
(T ).

4 Notation

In quantum computation, we generally use the finite dimensional Hilbert space H = Cn. Since this
has a canonical basis, say (ei)

n
i=1, we can freely talk about a vector or linear operator interchangibly

with their matrix forms. And this gives the natural isomorphism

n∑
i=1

viei 7→
[
v∗1 . . . v∗n

]
, thus H

and H∗ are conjugate linearly isomorphic. The image of a vector ξ, under the above isomorphism,
is called its dual and denoted by ξ∗ in mathematics. However for the sake of quantum mechanics,
we will denote the vector by |ξ〉 (read as ket of xi) and its dual is denoted by 〈ξ| (read as bra of xi),
that is, 〈ξ|∗ = |ξ〉.This is Dirac’s bra-ket notation.
Also for an indexed subset {ξα}α∈A of H we will simply write |α〉 instead of |ξα〉.
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