
1

Physics of Learning Theory
Lecture 2

Introduction to Learning Theory

Nilava Metya
February 5, 2025

1 Variations and applications of the Hoeffding bound

Recall the Hoeffding bound.

Theorem 1 (Hoeffding)
If {Xi}mi=1 are independent sub-Gaussians with means {µi}mi=1 and variance proxies {σ2}mi=1

respectively. Then P

[
m∑
i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑

i σ
2
i

}
for all t ≥ 0.

The first variation is obtained by replacing
k∑

i=1

Xi with its sample mean
1

k

k∑
i=1

Xi and re-

calling that if X ∈ [a, b] almost surely then X is sub-Gaussian with parameter σ = b−a
2

.

Corollary 2
Let X1, · · · , Xn be independent bounded random variables such that Xi ∈ [ai, bi] (almost

surely) and sample mean X. Then P
[
X − E

[
X
]
≥ t
]
≤ exp

{
− 2n2t2∑

i(bi − ai)2

}
for all t ≥ 0.

One can change parameters from t to ε := t+E
[
X
]

to get P
[
X ≥ ε

]
≤ exp

{
−
2n2

(
ε− E

[
X
])2∑

i(bi − ai)2

}
for all ε ≥ E

[
X
]
.

Using the above with all Xi’s (hence ai, bi’s) negated gives a lower tail bound, that is,

P
[
X ≤ ε

]
≤ exp

{
−
2n2

(
ε− E

[
X
])2∑

i(bi − ai)2

}
for all ε ≤ E

[
X
]
.

Combining we have

Corollary 3
Let X1, · · · , Xn be independent bounded random variables such that Xi ∈ [ai, bi] (almost

2

surely) and sample mean X and µ = E
[
X
]
. Then

P
[
X ≥ ε

]
≤ exp

{
− 2n2 (ε− µ)2∑

i(bi − ai)2

}
∀ ε ≥ µ

P
[
X ≤ ε

]
≤ exp

{
− 2n2 (ε− µ)2∑

i(bi − ai)2

}
∀ ε ≤ µ.

That is, we have a symmetric tail bound on either side of µ.

Recall that the Hoeffding bound gives the same bounds for a Bernouli random variable as
a random variable taking values in [0, 1]. Somehow this extra information about Bernouli
random variables can be incorporated to get the stronger Chernoff bound.

Theorem 4 (Chernoff Bound)
Let X1, · · · , Xn be independent {0, 1} values random variables such that pi = E [Xi], with
X =

∑
iXi and µ = E [X] =

∑
i pi. Then P [X ≥ (1 + ε)µ] ≤ exp

{
− ε2µ

2+ε

}
for ε > 0 and

P [X ≤ (1− ε)µ] ≤ exp
{
− ε2µ

2

}
for ε ∈ (0, 1).

To understand why the Chernoff bound is slightly stronger, let’s fix a probability pa-
rameter δ ∈ (0, 1) (to be thought of as the failure probability). Say X1, · · · , Xn are
{0, 1} valued random variables with p = E [Xi] for each i. Then using Corollary 2 with

t =
√

− ln δ
2n

gives P

[
X ≥ p+

√
− ln δ

2n

]
≤ δ and using Theorem 4 with ε =

√
−3 ln δ
pn

gives

P

[
X ≥ p+

√
−6p ln δ

2n

]
≤ δ as long as p > 3 ln(1/δ)

n
. Note that this scenario happens only

when δ is exponentially small (in terms of n). If p is constant, the Chernoff bound gives no
useful information for the rate. However, in certain scenarios the iid Bernouli parameters
p ≡ pn depend on the number of samples and pn → 0 so Chernoff speaks louder.

Now we look at some examples where we apply the Hoeffding (or Chernoff bound) to
analyze algorithms.

Example 1 (Boosting in two sided errors). Suppose we designed a randomized algorithm
f to answer a 0/1 question and on any given input x, it answers correctly with probability
2
3
. How can we use f to correctly predict its actual answer of input x with very high

confidence. Of course, we may or may not get the correct answer if we run f once on
x. Intuitively, if we run f on x 3000 times, we expect to get about 2000 correct answers
and 1000 wrong answers. Of course, then with high confidence we predict that the answer
which is reported most number of times (that is, more than half the times) is the correct
one. Intuitively, this makes sense. But, how do we quantify this confidence? We want to
answer the question that how many times should we run f on x so that we succeed with
probability 1− 1

n
.

3

Let’s run the algorithm n times on x and let the outputs be X1, · · · , Xk ∈ {0, 1}. Suppose
the actual answer of x on the actual question was a ∈ {0, 1} (a is not random, but Xi’s
are). Our reported answer is Y = 111X≥ 1

2
. This is also a random variable and we will show

that the probability of Y not being a is very small. Note that Xi are all Bernouli((1+ a)/3),
so Hoeffding bound is good enough. Corollary 3 gives a the same tail bound on P

[
X ≥ 1

2

]
and P

[
X ≤ 1

2

]
(corresponding to the ‘bad’ event {Y ̸= a} for a = 0, 1 respectively). Thus

P [Y ̸= a] ≤ exp {−2k((1− 2a)/6)2} = exp {−k/18} irrespective of whether a is 0 or 1.
Hence k ≥ 18 lnn trials gives us a confidence of ≥ 1− 1

n
.

Example 2 (Johnson-Lindenstrauss lemma). Say we are a dimension d, a probability pa-
rameter δ ∈ (0, 1/2), fault tolerance ε ∈ (0, 1), a positive integer m > − ln δ

ε2
and any vector

xxx ∈ Rd. We pick a matrix M ∈ Rm×d whose entries are independent N (0, 1)’s and consider
Π = 1√

m
M . Then P [(1− ε) ∥xxx∥2 ≤ ∥Πxxx∥2 ≤ (1 + ε) ∥xxx∥2] ≥ 1 − δ. This is known as the

famous Johnson-Lindenstrauss dimensionality reduction. In fact, if we are given n points
xxx1, · · · ,xxxn ∈ Rd, by a union bound argument (because the above was for one xxx) we can
show that for m = O(ln(n/δ)/ε2), all the distances ∥xxxi − xxxj∥2 are preserved under a ran-
dom such Π with probability 1 − δ. For instance, with probability 0.99, we can reduce the
dimension to m = O(lnn/ε2) upto ε error. In other words, the existence of such a Π has
positive probability for small enough δ. Since the Π’s were combinatorial (i.e., chosen from
a finite set), we conclude that such a dimension-reducing Π always exists.

2 Supervised Learning

The setup. In supervised learning, we are to design a learner that learns the ‘labels’ of
certain ‘objects’ or ‘data’ and then we can use it to predict unlabelled objects. An example
could be a coin-sorting machine that understands (with human help) the sizes of various
coins (data) and what size associates with what denomination (labels), and then when
this model is released as a commercial product, the machine can speed up the process of
sorting coins into different labelled stacks.
Formally, the data or inputs belong to some space X , and the labels are in some space
Y. For the above example, X is the set of all coins and Y contains the string of labels
of these coins like ‘dime’, ‘nickel’, ‘penny’ and so on. We are interested in a certain joint
probability distribution P over X × Y. A training set is a finite (multi-)set of elements of
X × Y chosen independently and identically according to the distribution P. We always
denote this training set as {zi = (xi, yi)}ni=1. Our goal is to design a model h : X → Y,
based on this training data, which has certain properties according to our needs. Such an
h is oftentimes also referred to as a hypothesis or a predictor. Note that a model can be any
function X → Y.

4

Loss function. How do we quantify the predictors which satisfy our needs. More pre-
cisely, when is a model better than another? For this, we have something called a loss
function ℓ : Y × Y → R which is to be thought of as penalizing a predicted label against
the actual label. For example, the loss suffered by a model h on a data point x with label
y is ℓ(h(x), y) because h(x) is the predicted label whereas y is the actual label. Such a
loss function is assumed to be non-negative. A ‘best’ model is one which suffers the least
expected loss. The expected loss of a model h is L(h) := E

(x,y)∼P
[ℓ(h(x), y)], also called the

population risk. We want to find infh L(h).

Hypothesis class. One question one might wonder is that what is the argmin being taken
over. In practice, we do not have a way of optimizing over arbitrary functions. We instead
want to focus on a more specific subclass of functions which either make more sense in the
context we are working on or are easier to work with. Such a constrained set of functions
H ⊆ YX is called a hypothesis class. Now we can clearly state a goal that we want to find
inf
h∈H

E
(x,y)∼P

[ℓ(h(x), y)] (and find the minimizer if feasible or approximate it). This completes

the formal setup of a supervised learning problem. This is impossible in general because
we will not have access to P on the entire X × Y but only to a finite sample. So we aim
to design some h ∈ H with minimum possible empirical loss. In practice, we need to make
assumptions and lots of restrictions on H,P, ℓ to get ‘good’ results (whatever that means).

Examples.

Example 3 (Binary classification). In this case we want to classify objects in X into two
categories, so the label space is Y = {□,×}. The usual penalization is given by the function
ℓ(□,×) = ℓ(×,□) = 1, ℓ(□,□) = ℓ(×,×) = 0. There is the classical problem of support
vector machines. We describe a very simple but related problem. If X ⊆ Rn, take H =

{sgn(⟨aaa, ·⟩ − b) | aaa ∈ Rn, b ∈ R} where sgn(x) =

{
□ if x ≥ 0

× otherwise
.

Example 4 (Regression). In the regression problem, we would like to predict continuous
outputs Y = R from a continuous input space X = Rn. A popular loss function used in
this case is ℓ(y′, y) = (y′ − y)2. Other possible loss functions are ℓ(y′, y) = |y′ − y|p for any
p ≥ 0 but p = 2 is used in practice due to smoothness, convexity and low integer power.
The hypothesis class depends on what kind of functions one thinks are fit for the model,
again a choice to be made. Let’s just focus on Hd = R[x1, · · · , xn]d as the real polynomials
in n variables of degree at most d. If d = 1, we call it linear regression. If d = 2 we call it
quadratic regression. And so on.

5

Empirical risk minimization. Let’s recall that our goal was to minimize the population
risk, namely, inf

h∈H
E

(x,y)∼P
[ℓ(h(x), y)]. In practice we do not have access to the entire popu-

lation; we only have a training set of n data points, drawn independently from the same
distribution as the entire population. To achieve our main goal, we can instead focus on

the empirical risk or sample risk L̂(h) = 1
n

n∑
i=1

ℓ(h(xi), yi). Empirical risk minimization, or

ERM in short, refers to finding ĥ ∈ argmin
h∈H

L̂(h). It is an unbiased estimator of the pop-

ulation risk. In other words, E
zi

iid∼P

[
L̂(h)

]
= L(h). The hope with ERM is that minimizing

the empirical error will lead to small population error. So we are interested in the excess
risk L

(
ĥ
)
− inf

h∈H
L(h). In other words, we are generalizing the empirical risk minimizer

to the population risk minimizer. One way to make this rigorous is by showing that the
ERM minimizer’s excess risk is bounded. If n is quite large, it makes sense to hope this
intuitively due to the law of large numbers.

2.1 Non-asymptotic analysis

We do want non-asymptotic results when we have limited number of data points (that is, n
is relatively small). The LLN roughly states that the empirical average of a large number iid
data behave as expected. In order to do the same for smaller-ish n, we study the concen-
tration around the mean and hence we want to use concentration inequalities. Fortunately
a lot of the distributions we deal with are, in real life, sub-Gaussian (or Lipschitz mappings
of sub-Gaussians). But what we lose is that we can no longer make statements which are
guaranteed to be true, but only bounds which hold ‘with high probability’. There is no
clear definition of this term in literature but often used to refer to probabilities which are
≥ 1− 1

poly(n) .

Let me take a small detour and introduce a trick I learnt in my CS courses. Let Xj,1, · · · , Xj,n ∈
[0, 1] be independent for k ∈ [K]. Think of j as the index of the person performing a
repeated task. Denote their sample means by Yj := 1

n

∑
iXji and µj := E [Yj]. Then

P

|Yj − µj| ≥ t︸ ︷︷ ︸
Ej :=

 ≤ 2 exp {−2nt2} ∀ t ≥ 0, j ∈ [K] by Hoeffding. If I want to find out the

chance that even one of these random variables has large deviation from mean, I would
consider the event E :=

⋃
j∈[K]

{|Yj − µj| ≥ t} =
⋃

j Ej. Let’s find the probability of this

‘bad’ event. P [E] ≤
∑

j P [Ej] ≤ 2
∑

j exp(−2nt2) = 2K exp(−2nt2). t =
√

ln(2K/δ)

2n
gives

6

P
[
∃j ∈ [K] s.t. |Yj − µj| ≥

√
ln(2K/δ)

2n

]
≤ δ. Taking complements,

P

[
|Yj − µj| <

√
ln(2K/δ)

2n
∀ j ∈ [K]

]
≥ 1− δ.

In other words, we can make statements of the form “with high probability, each person

remains close to their expected behavior on average.” Alternately taking n =
ln(2K/δ)

2ε2
,

t = ε gives P [|Yj − µj| < ε ∀ j ∈ [K]] ≥ 1 − δ. In other words, if every person performs
ln(2K/δ)

2ε2
experiments, each of their average behavior is expected to be within ε distance

of the expected behavior with probability 1− δ.

Let’s now consider this in the context of learning theory where the people are replaced
with models h ∈ H. Recall that our main goal was to reach that the minimizer of ERM
approximately minimizes the actual loss, that is, the excess risk L

(
ĥ
)
−min

h∈H
L(h) is quite

small. If we can say with high certainty that every predictor is penalized almost as much
on the population as the empirical data, we can conclude with high probability that the
ERM minimizer also approximately minimizes the population risk. This is seen as follows.

2.1.1 Finite hypothesis class

Proposition 5
If every model h ∈ H has almost the same penalization on the population as the sample,
that is

∣∣∣L(h)− L̂(h)
∣∣∣ ≤ ε

2
, then an ERM ĥ ∈ argmin

h∈H
L̂(h) minimizes L upto ε accuracy.

Proof. Denote h∗ := argminh∈H L(h). We want an upper bound on L
(
ĥ
)
− L (h∗). Let’s

write it a little differently. L
(
ĥ
)
−L (h∗) = L

(
ĥ
)
− L̂

(
ĥ
)
+L̂

(
ĥ
)
− L̂(h∗)+L̂(h∗)− L(h∗).

Note L̂
(
ĥ
)
− L̂(h∗) ≤ 0. So L

(
ĥ
)
− L (h∗) ≤

∣∣∣L(ĥ)− L̂
(
ĥ
)∣∣∣ + ∣∣∣L̂(h∗)− L(h∗)

∣∣∣. Using

the hypothesis gives L
(
ĥ
)
− L (h∗) ≤ 2 sup

h∈H

∣∣∣L(h)− L̂(h)
∣∣∣ ≤ ε. ■

In simpler terms, a uniform upper bound on
∣∣∣L− L̂

∣∣∣ implies generalization of the ERM
to the population risk minimizer. Note that if we did not know a uniform upper bound
on
∣∣∣L− L̂

∣∣∣, we could have still bounded
∣∣∣L̂(h∗)− L(h∗)

∣∣∣ via Hoeffding bound (with high

probability). However,
∣∣∣L(ĥ)− L̂

(
ĥ
)∣∣∣ is data dependent (due to the data dependency of

ĥ). It is quite possible that this term is quite big. In fact it’s often practically encountered if
H is not chosen carefully – even with small training error, there can be large testing error.

7

Corollary 6
For a finite hypothesis class H, a loss function ℓ ∈ [0, 1] with n training data points and

δ ∈ (0, 0.5), we have P

[∣∣∣L(h)− L̂(h)
∣∣∣ <√ 1

2n
ln

(
2 |H|
δ

)
∀ h ∈ H

]
≥ 1− δ.

Consequently, P
[∣∣∣L(ĥ)− L(h∗)

∣∣∣ <√ 2
n
ln
(

2|H|
δ

)]
≥ 1− δ.

Proof. The first part is proven the same way as the trick discussed in the previous page
with people being replaced by models h, K = |H| and the random variables being the
evaluation of ℓ on the training data. The second part is immediate by Proposition 5. ■

Corollary 7
For a finite hypothesis class H, a loss function ℓ ∈ [0, 1], δ ∈ (0, 0.5), and (additive) error

tolerance ε > 0, it is enough to have n = O
(

2

ε2
ln

(
2 |H|
δ

))
training data points to achieve

ε-generalization of ERM to population risk minimum with probability 1− δ.

Corollary 8
For a finite hypothesis class H, a loss function ℓ ∈ [0, 1], (additive) error tolerance ε > 0

and n samples,
∣∣∣L(h)− L̂(h)

∣∣∣ < ε ∀ h ∈ H with probability ≥ 1− 2 |H| exp(−2nε2).

2.1.2 Infinite hypothesis class

The above analysis relied heavily on the size of H. This cannot be done when H is in-
finite, which it usually is. Unless we assume some structure on H, it’s quite difficult to
do the analysis for infinite H. So we will assume that H is bounded with some bounded
parameters, usually taken to be vectors in Rp. That is we will have B > 0 such that
H = {hθ | θ ∈ Rp, ∥θ∥2 ≤ B}. Θ := {θ ∈ Rp, ∥θ∥2 ≤ B} is the parameter space for θ’s. The
technique to be used here is called brute-forced discretization. Here’s the main idea.

Let’s abuse notation and write L(θ), L̂(θ) for L(hθ), L̂(hθ) respectively. As before, we name
the ‘bad’ events Eθ :=

{
L(θ)− L̂(θ) ≥ ε

}
. If we want to use the previous technique, we

end up in the situation P
[⋃
θ∈Θ

Eθ

]
≤
∑
θ∈Θ

P [Eθ] where the sum is an infinite sum of finite

quantities whose known upper bounds (via the Hoeffding bound) are all equal. However,
if we know that ‘nearby’ θ’s give ‘nearly the same’ losses, we can choose some prototype
candidates θ1, · · · , θN ∈ Θ so that every θ ∈ Θ is ‘near’ some θi. This way, we have
discretized Θ. Now a standard union bound + Hoeffding trick on these prototype θi’s will
do the job because there’s only finitely many of them and they approximate the global
behavior of the loss for all θ ∈ Θ. Let’s make these precise.

The ‘nearness’ of the prototype θi’s is made rigorous through what is called an r−net.

8

Definition 9 (r−net)
Let ε > 0 and S a subset of a metric space (X, d). The closed ball of radius r around
x ∈ X will be denoted by Dr(x) = {y ∈ X | d(x, y) ≤ r}. An r−net of S is a subset Tr ⊆ S
such that for each x ∈ S there is some y ∈ Tr satisfying d(x, y) ≤ r. In other words,
S ⊆

⋃
x∈Tr

Dr(x).

Now we need to find an r−net of Θ which is not only finite, but also not too large in size,
otherwise the union bound + Hoeffding trick would not work. We are in luck because there
is an r−net of considerable size. A detailed proof of this can be found in Appendix A.1.

Lemma 10

Θ = {θ ∈ Rp | ∥θ∥2 ≤ B} has an r−net of size ≤
(
3B

r

)p

.

Proof. Greedy. ■

Now let’s make the idea of “nearby θ’s give nearly the same loss” precise, which will be an
added assumption on the loss function. Recall that the loss of hθ on (x, y) is ℓ(hθ(x), y).
This value actually depends on three things, namely θ, x, y. We would like that for the same
data point (x, y), changing the parameters of the model only a little bit does not change
the loss by much. That is, for any (x, y), if we change the parameters only slightly, the
change in the penalty is controlled. This is captured by something called Lipschitz-ness. A
Lipschitz function is continuous, but not necessarily differentiable. All we can say is that
Lipschitz functions are almost everywhere differentiable.

Definition 11 (κ−Lipschitz)
A real. valued function f : X → R on a metric space (X, d) is said to be κ−Lipschitz if
|f(x)− f(y)| ≤ κd(x, y) for every x, y ∈ X.

Let’s now try to imitate the calculations as before, incorporating the Lipschitzness of the
loss function and see how things turn out. Say, the loss ℓ takes values in [0, 1] and
is κ−Lipschitz in θ with the usual ℓ2 norm on Rp, that is, |ℓ(hθ(x), y)− ℓ(hθ′(x), y)| ≤
κ ∥θ − θ′∥2. Consequently, L, L̂ are also κ−Lipschitz. Since we already have an r−net T

for Θ ⊆ Rp of size N ≤
(
3B

r

)p

, let’s just focus on the loss values on these points, which

approximate the other points in its neighborhood. Say T = {θ1, · · · , θN}. So we are in-
terested in the good event E =

{∣∣∣L(θi)− L̂(θi)
∣∣∣ < ε

2
∀ i ∈ [N]

}
. We put ε/2 instead of ε

in order to account for the errors caused by approximation of points in Θ outside T . By
Corollary 8, P [E] ≥ 1 − 2N exp(−nε2/2). We have thus obtained a uniform upper bound
for
∣∣∣L− L̂

∣∣∣ on T with high probability. Let’s extend this to Θ. Indeed for any θ ∈ Θ, there

is some x ∈ T such that ∥θ − x∥2 ≤ r. Recall that L, L̂ are κ−Lipschitz. Thus conditioned

on E,
∣∣∣L(θ)− L̂(θ)

∣∣∣ ≤ |L(θ)− L(x)|+
∣∣∣L(x)− L̂(x)

∣∣∣+ ∣∣∣L̂(x)− L̂(θ)
∣∣∣ ≤ 2κr + ε

2
.

9

Theorem 12
Suppose we are given an hypothesis class H parameterized by Θ = {θ ∈ Rp | ∥θ∥2 ≤ B},
a loss function ℓ taking values in [0, 1] and κ−Lipschitz on model parameters θ, n training
samples and an (additive) error tolerance ε > 0.

Then P
[∣∣∣L(θ)− L̂(θ)

∣∣∣ < ε ∀ θ ∈ Θ
]
≥ 1− 2

(
18Bκ

ε

)p

exp(−2nε2).

Proof. Choose r =
ε

5κ
in the above discussion. ■

Theorem 13
Suppose we are given an hypothesis classH parameterized by Θ = {θ ∈ Rp | ∥θ∥2 ≤ B}, a
loss function ℓ taking values in [0, 1] and κ−Lipschitz on model parameters θ and n training
samples.

Then P

[∣∣∣L(θ)− L̂(θ)
∣∣∣ < O(√pmax {1, ln(κBn)}

n

)
∀ θ ∈ Θ

]
≥ 1−O(exp(−Ω(p))).

Corollary 14
Suppose we are given an hypothesis class H parameterized by Θ = {θ ∈ Rp | ∥θ∥2 ≤ B},
a loss function ℓ taking values in [0, 1] and κ−Lipschitz on model parameters θ, δ ∈ (0, 0.5)
and an (additive) error tolerance ε > 0. Then it is enough to have a training sample set

of size n = O
(
ln(2/δ) + pmax {1, ln(18Bκ/ε)}

2ε2

)
to guarantee

∣∣∣L(θ)− L̂(θ)
∣∣∣ < ε ∀ θ ∈ Θ

with probability at least 1− δ.

10

A Appendix

A.1 Proof of Lemma 10

Proof. In what follows, B,Bo will respectively denote closed and open balls.

Consider the following algorithm for any given r > 0 to find a set Tr ⊆ Θ = {θ ∈ Rp | ∥θ∥2 ≤ B}.
Input: r > 0, dimension p, radius B (of Θ).
Output: a number N and points vvv1, · · · , vvvN ∈ Θ such that every point in Θ is r−close to

some vvvi.
1: begin
2: N ← 1
3: vvv1 ← (1, 0, · · · , 0) ∈ Θ
4: T ← Bo

r(vvv1) ∩Θ ▷ points in Θ which are at distance < ε from vvv1
5: while N ≥ 1 do
6: vvvN ←any point in Θ∖ T
7: T ← T ∪ (Br(vvv2) ∩Θ)
8: if S = Θ then ▷ check if Θ has been covered
9: break

10: else
11: N ← N + 1
12: end if
13: end while
14: return N, Tr = {vvv1, · · · , vvvN}
15: end

Now we prove that this algorithm actually gives Tr and size N as desired. If the above

algorithm terminates with answer N, Tr, then Θ ⊆
N⋃
i=1

Bo
r(vvvi) ⊆

N⋃
i=1

Br(vvvi).

Claim 15
The above algorithm terminates.

Proof. Suppose the algorithm goes on forever. So we get a sequence of points vvv1, vvv2, · · ·

such that Θ ⊆
⋃
i∈N
Bo
r(vvvi). Since Θ is compact there is a finite N such that Θ ⊆

N⋃
i=1

Bo
r(vvvi).

This is a contradiction to our original assumption. ■

Next we note that just by how our algorithm is designed, if xxx,yyy ∈ Tr then ∥xxx− yyy∥2 ≥ r.
This is because a new point (line 6) is always chosen so that it is not in the r−ball around
any of the previously chosen points, and distance is symmetric.

Further Tr is maximal in the sense that if T ′ ⊋ Tr is a collection of points in Θ, there will be
two points in T ′ which are at most r−close to each other. This is by our breaking criterion

11

on line 8. Simply put, Tr covers Θ with r−balls.

Claim 16
If xxx,yyy ∈ Tr are distinct, then Bo

r
2
(xxx) ∩ Bo

r
2
(yyy) ∩Θ = ∅.

Proof. Suppose ppp ∈ Θ ∩ Bo
r
2
(xxx) ∩ Bo

r
2
(yyy) and say yyy was picked after xxx in the algorithm.

Then ∥xxx− yyy∥2 ≤ ∥xxx− ppp∥2 + ∥ppp− yyy∥2 ≤ r. Moreover equality here occurs only when
∥ppp− xxx∥2 = ∥ppp− yyy∥2 = r

2
which means ppp /∈ Bo

r
2
(xxx) which is a contradiction. So it must

happen that ∥xxx− yyy∥2 < r which contradicts the constructive step in line 6 because this
indicated that yyy was picked in the r−ball around xxx. ■

Claim 17
For any t ≥ 0, if xxx ∈

⋃
i∈[N]

Bt(vvvi) ⊆ Rn then ∥xxx∥2 ≤ B + t.

Proof. Say xxx ∈ Bt(vvvi) for some i. Then ∥xxx∥2 ≤ ∥vvv∥2 + ∥xxx− vvv∥2 ≤ B + t. ■

The last two claims show that X :=
⋃
i∈[N]

Br/2(vvvi) is an almost disjoint union and is con-

tained in the closed ball of radius B + r
2
. The volume of a ball of radius t in Rp is

cpt
p where cp is a constant depending only on p. Thus N(r/2)p ≤ (B + r/2)p whence

N ≤
(
2B
r
+ 1
)p ≤ (3B

r

)p whenever r ≤ B. ■

	Variations and applications of the Hoeffding bound
	Supervised Learning
	Non-asymptotic analysis
	Finite hypothesis class
	Infinite hypothesis class

	Appendix
	Proof of lem:rnet

