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1 Introduction

We will recall some probability theory and look at useful deviation or concentration bounds
which are frequently used in analyzing algorithms (in learning theory). Recall that a
(real-valued) random variable on a probability space (Ω, S,P) is nothing but a ‘measurable
function’ X : Ω → R. Here Ω is the universal or sample space where we think of events in,
S is a collection of events in Ω and P : S → [0, 1] assigns probability to each event in S.
The space of events S is constrained to satisfy some obvious rules like Ω is an event, if A is
an event then so is Ω∖ A and that a countable union of events is an event which makes it
sensible to work with the concept of assigning probabilities to each event. We will often say
that P [A] is the probability that event A occurs. If A = {a} is a singleton, we always write
P [a] instead of P [{a}]. The probability function P is also constrained to a couple of rules,
namely, that the probability of the union of a mutually disjoint collection of events, which
is an event, is the same as the sum of the probabilities of each of those events and that the
probability that Ω occurs is 1. Roughly a random variable is to be thought of as a way of
assigning points of the sample space to real numbers which are really real and are more
tangible to work with, while respecting the rules of S. Such a random variable induces a
map X−1 : 2R → S by X−1(A) := {x ∈ Ω | X(x) ∈ S} for any A ⊆ R, and hence induces
a probability on R given by PR[A] = P [X−1(A)] where A is any ‘measurable’ subset of R.
The random variable being a ‘measurable function’ precisely means that X−1(A) always
lies in S.
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1.1 Mean

The average or mean of a random variable X, often denoted as E [X], µ(X), or simply µ
when the context is clear, is E [X] =

∫
Ω
X dP. For the discrete case, which we will mostly be

interested in, this boils down to E [X] =
∑
i∈Ω

X(i)P [i]. Note that if X is an indicator random

variable for event A, that is, X = 1 if A occurs and 0 otherwise, then E [X] = P [A].

Example 1. Consider tossing a fair coin. Here Ω = {H,T}. The probability function is
P [∅] = 0,P [H] = P [T] = 0.5,P [{H,T}] = 1. A natural random variable to consider is

X(i) = 111H :=

{
1 if i = H
0 if i = T

. The corresponding probability induced on R is given by

PR[A] =


0 if 0 /∈ A, 1 /∈ A

0.5 if 0 ∈ A, 1 /∈ A

0.5 if 0 /∈ A, 1 ∈ A

1 if 0 ∈ A, 1 ∈ A

. In this case, E [X] = 1 · P [H] + 0 · P [T] = 0.5

Example 2. Consider tossing n fair coins sequentially and independently. Here Ω = {H,T}n.
So the singleton outcomes are tuples of H,T. The probability function is given by P [xxx] =
2−n for any element x ∈ Ω and then extending by countable additivity of P. Consider

n random variables X1, · · · , Xn where Xi(xxx) :=

{
1 if xi = H
0 if xi = T

. Each Xi is the same

random variable as the previous example after looking at the ith coordinate. A natu-
ral variable to consider is the total number of heads obtained in one round of tossing,
that is X = X1 + · · · + Xn. The corresponding probability induced on R is given by

PR[k] =

{(
n
k

)
2−n if k ∈ {0, · · · , n}

0 otherwise
and extend by countable additivity. Here E [X] = n

2
.

One useful result used for calculating expectations of sums of random variables is that if
a, b ∈ R and X, Y are random variables then E [aX + bY ] = aE [X] + bE [Y ]. It’s worthy to
note that sums and scalings of random variables are random variables. This result does not
depend on ‘independence’ of X, Y . Independence plays an important role for the average
of products of random variables (which is a random variable). We say random variables
X1, · · · , Xn are (mutually) independent if P [

⋂n
i=1 {Xi ≤ ai}] =

∏n
i=1 P [Xi ≤ ai] ∀ ai ∈ R.

This is a stronger notion than pairwise independence where we demand that only every
pair of them are independent. Note that mutual independence implies pairwise indepen-
dence. If X, Y are independent then E [XY ] = E [X]E [Y ].

For a random variable X ≥ 0 and a ∈ R let Y be the indicator random variable indicating
whether X ≥ a, that is, Y is 1 if X ≥ a and 0 otherwise. Then clearly X ≥ aY . Indeed if
X ≥ a then Y = 1 so X ≥ aY and if X < a then Y = 0 so that X ≥ 0 = aY . Expectation
preserves inequalities, so E [X] ≥ aE [Y ] = aP [X ≥ a]. This establishes
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Theorem 1 (Markov’s inequality)

If X is a non-negative random variable and a ∈ R then P [X ≥ a] ≤ E [X]

a
.

1.2 Variance

Let’s come to deviation now. One natural way to measure deviation is to look how on
average much a random variable deviates either way from its mean (behavior). To look
for deviation in either direction of E [X] we consider the random variable (X − E [X])2.
Define the variance of a random variable X as Var [X] := E [(X − E [X])2]. One useful
result to compute variance is that if X, Y are independent then Var [aX + bY ] = a2Var [X]+
b2Var [Y ]. This extends to n pairwise independent random variables. Another useful result
is Var [X] = E [X2]− E [X]2.

Applying Theorem 1 to (X − E [X])2 ≥ 0 gives

Theorem 2 (Chebyshev’s inequality)

If X is a random variable and a ∈ R≥0 then P [|X − E [X]| ≥ a] ≤ Var [X]

a2
.

1.3 Higher moments

One might just ask why stop at the second power to measure deviation. What about the
random variable (X − E [X])k for k ≥ 2? These are called higher centeral moments. Note
that E

[
(X − E [X])k

]
= 0 when k is odd and the distribution of X is symmetric about

E [X]. So it makes sense to consider the random variables Xk := |X − E [X]|k instead. If
we have access to such numbers, we can use the same trick as the proof of Chebyshev’s
inequality and get P [|X − E [X]| ≥ a] ≤ µk

ak
. Knowing all higher moments means that

we know something known as the ‘characteristic function’ (not yet defined) of X which
uniquely determines X. But our aim was the study deviations using small information.
Generally, higher moments are not known.

Here’s a small trick to optimally apply Markov to a non-homogeneous function. Let’s
just take the ‘best polynomial’ ever known. It’s non-homogeneous, positive, monotonic
(but not monotonous) and has values at all points. We want to study the concentration
of eX−µ. Take f(x) = ex ≥ 0. Chebyshev’s inequality do this for f = x2 but this was
homegeneous so scaling the random variables had no effect on the inequalities obtained.
Consider the random variable Yt = f(t(X − µ)) where t is a real variable. Then applying
Markov on |Yt| = Yt gives P

[
Yt = et(X−µ) ≥ eta

]
≤ E[Yt]

eta
∀ t ≥ 0, a ∈ R. This is equiv-

alent to P [X − µ ≥ a] ≤ E[et(X−µ)]
eta

. Since this is true for every t ≥ 0, we conclude that

P [X ≥ a+ µ] ≤ inf
t≥0

E
[
et(X−µ)

]
eta

. One issue with this argument is that MX(t) := E [exp(tX)]

may not always exist. Let’s say they exist for t ∈ [0, b] for some b ≥ 0 (sanity check: b = 0
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always works). Then we can modify our inequality to P [X ≥ a+ µ] ≤ inf
t∈[0,b]

E
[
etX

]
et(a+µ)

. The

moment generating function (mgf, in short) of a random variable X is MX(t) = E [exp(tX)].

Example 3 (Bernouli). Say X takes val-
ues 0, 1 with probability 1

2
each. Then

MX(t) = E [exp(tX)] = 1
2
exp t + 1

2
always

exists. Our above inequality takes the form

P [X ≥ a] ≤ 1

2
inf
t≥0

exp t+ 1

eta
. If a ≤ 1

2
then

the RHS is 1 at t = 0. If 1
2
< a < 1 then the

RHS is 1
2(1−a)1−aaa

at t = ln(a) − ln(1 − a).
Taking a → 1− gives that if a = 1, the
RHS is 1

2
attained at ′′t = +∞′′ (can also

be checked directly by plugging in a = 1
directly). If a > 1 the RHS is 0 again at
′′t = +∞′′.

Example 4 (Rademacher). Say X takes val-
ues ±1 with probability 1

2
each. Such a ran-

dom variable is called a Rademacher ran-
dom variable. Then MX(t) = E [exp(tX)] =
1
2
(et + e−t) always exists. Our above

inequality takes the form P [X ≥ a] ≤
1

2
inf
t≥0

et + e−t

eta
. The RHS looks like

1 at t∗ = 0 if a ≤ 0√
1

(1−a)1−a(1+a)1+a at t∗ = 1
2
ln
(
1+a
1−a

)
if a ∈ (0, 1]

0 at t∗ = ∞ if a > 1

.

1.4 Sub-Gaussian random variables

Now let’s apply it to our favorite distribution – the Gaussian. Recall that the Gaussian dis-

tribution Z with mean µ and variance σ2 has the density f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
.

The moment generating function of this Gaussian is M(t) = exp
(
µt+ σ2t2

2

)
and exists

∀ t ∈ R. Substituting this into our ‘moment-based Markov inequality’ gives P [Z ≥ µ+ a] ≤

inf
t≥0

exp

(
σ2t2

2
− at

)
= exp

(
− a2

2σ2

)
. This means P [|Z − µ| ≥ a] ≤ 2 exp

(
− a2

2σ2

)
for any

a ≥ 0.
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This calculation let’s us study the deviation of a large class of random variables, if this
class is defined properly. If we revisit the calculation done for the Gaussian, we see that
the only necessary property of any random variable X that can get the same bound is
the existence of some σ2 such that we can get a similar function as an upper bound on
the mgf of X. More precisely, we demand that there exist a real number σ > 0 such
that E [exp(t(X − E [X]))] ≤ exp

(
t2σ2

2

)
∀ t ∈ R. Alternately, instead of using the proof

and calculation details, one might suggest to study those class of random variables whose
deviations are bounded by those of the Gaussian. They turn out to be the same.

Definition 3
A random variable X with mean µ is said to be sub-Gaussian if there is a constant c > 0
and a Gaussian Z ∼ N (0, τ 2) such that P [|X − µ| ≥ a] ≤ c P [|Z| ≥ a] ∀ a ≥ 0.

Alternately, a random variable X with mean µ is said to be sub-Gaussian if there exists
σ > 0 such that E [exp(t(X − E [X]))] ≤ exp

(
t2σ2

2

)
∀ t ∈ R. This σ2 is said to be the

sub-Gaussian parameter and acts as a proxy for variance.

This is quite a nice class because sub-Gaussianity is preserved under linear combinations.
In particular, if X1, X2 are independent sub-Gaussians with parameters σ2

1, σ
2
2 respectively

then X1 +X2 is also a sub-Gaussian with parameter σ2
1 + σ2

2. In other words, the variance
proxies add up just like the Gaussian. Using this property we immediately get

Theorem 4 (Hoeffding)
If {Xi}mi=1 are independent sub-Gaussians with means {µi}mi=1 and variance proxies {σ2}mi=1

respectively. Then P

[
m∑
i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑

i σ
2
i

}
for all t ≥ 0.

At our current discussion stage, sub-
Gaussians seem quite useless. But, a lot of
the ‘good’ random variables we see are actu-
ally sub-Gaussian. In fact if X is a bounded
random variable taking values in [a, b] then
X is sub-Gaussian with parameter

(
b−a
2

)2.
Here’s a comparison of the bounds obtained
with fine analysis as in Example 4 vs what
the Hoeffding bound gives us. Notice the
smoothness difference.

Corollary 5
Let X1, · · · , Xn be independent bounded random variables such that Xi ∈ [ai, bi] (almost

surely) and sample mean X. Then P
[
X − E

[
X
]
≥ t

]
≤ exp

{
− 2n2t2∑

i(bi − ai)2

}
for all t ≥ 0.
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1.5 Variations and applications of the Hoeffding bound

The first variation is obtained by replacing the sum
k∑

i=1

Xi with its sample mean
1

k

k∑
i=1

Xi.

Corollary 6
Let X1, · · · , Xn be independent bounded random variables such that Xi ∈ [ai, bi] (almost

surely) and sample mean X. Then P
[
X − E

[
X
]
≥ t

]
≤ exp

{
− 2n2t2∑

i(bi − ai)2

}
for all t ≥ 0.

One can change parameters from t to ε := t+E
[
X
]

to get P
[
X ≥ ε

]
≤ exp

{
−
2n2

(
ε− E

[
X
])2∑

i(bi − ai)2

}
for all ε ≥ E

[
X
]
.

Using the above with all Xi’s (hence ai, bi’s) negated gives a lower tail bound, that is,

P
[
X ≤ ε

]
≤ exp

{
−
2n2

(
ε− E

[
X
])2∑

i(bi − ai)2

}
for all ε ≤ E

[
X
]
.

Combining we have

Corollary 7
Let X1, · · · , Xn be independent bounded random variables such that Xi ∈ [ai, bi] (almost
surely) and sample mean X and µ = E

[
X
]
. Then

P
[
X ≥ ε

]
≤ exp

{
− 2n2 (ε− µ)2∑

i(bi − ai)2

}
∀ ε ≥ µ

P
[
X ≤ ε

]
≤ exp

{
− 2n2 (ε− µ)2∑

i(bi − ai)2

}
∀ ε ≤ µ.

That is, we have a symmetric tail bound on either side of µ.

Recall that the Hoeffding bound gives the same bounds for a Bernouli random variable as
a random variable taking values in [0, 1]. Somehow this extra information about Bernouli
random variables can be incorporated to get the stronger Chernoff bound.

Theorem 8 (Chernoff Bound)
Let X1, · · · , Xn be independent {0, 1} values random variables such that pi = E [Xi], with
X =

∑
iXi and µ = E [X] =

∑
i pi. Then P [X ≥ (1 + ε)µ] ≤ exp

{
− ε2µ

2+ε

}
for ε > 0 and

P [X ≤ (1− ε)µ] ≤ exp
{
− ε2µ

2

}
for ε ∈ (0, 1).

To understand why the Chernoff bound is slightly stronger, let’s fix a probability pa-
rameter δ ∈ (0, 1) (to be thought of as the failure probability). Say X1, · · · , Xn are
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{0, 1} valued random variables with p = E [Xi] for each i. Then using Corollary 6 with

t =
√

− ln δ
2n

gives P

[
X ≥ p+

√
− ln δ

2n

]
≤ δ and using Theorem 8 with ε =

√
−3 ln δ
pn

gives

P

[
X ≥ p+

√
−6p ln δ

2n

]
≤ δ as long as p > 3 ln(1/δ)

n
. Note that this scenario happens only

when δ is exponentially small (in terms of n). If p is constant, the Chernoff bound gives no
useful information for the rate. However, in certain scenarios the iid Bernouli parameters
p ≡ pn depend on the number of samples and pn → 0 so Chernoff speaks louder.

Now we look at some examples where we apply the Hoeffding (or Chernoff bound) to
analyze algorithms.

Example 5 (Boosting in two sided errors). Suppose we designed a randomized algorithm
f to answer a 0/1 question and on any given input x, it answers correctly with probability
2
3
. How can we use f to correctly predict its actual answer of input x with very high

confidence. Of course, we may or may not get the correct answer if we run f once on
x. Intuitively, if we run f on x 3000 times, we expect to get about 2000 correct answers
and 1000 wrong answers. Of course, then with high confidence we predict that the answer
which is reported most number of times (that is, more than half the times) is the correct
one. Intuitively, this makes sense. But, how do we quantify this confidence? We want to
answer the question that how many times should we run f on x so that we succeed with
probability 1− 1

n
.

Let’s run the algorithm n times on x and let the outputs be X1, · · · , Xk ∈ {0, 1}. Suppose
the actual answer of x on the actual question was a ∈ {0, 1} (a is not random, but Xi’s
are). Our reported answer is Y = 111X≥ 1

2
. This is also a random variable and we will show

that the probability of Y not being a is very small. Note that Xi are all Bernouli((1+ a)/3),
so Hoeffding bound is good enough. Corollary 7 gives a the same tail bound on P

[
X ≥ 1

2

]
and P

[
X ≤ 1

2

]
(corresponding to the ‘bad’ event {Y ̸= a} for a = 0, 1 respectively). Thus

P [Y ̸= a] ≤ exp {−2k((1− 2a)/6)2} = exp {−k/18} irrespective of whether a is 0 or 1.
Hence k ≥ 18 lnn trials gives us a confidence of ≥ 1− 1

n
.

Example 6 (Johnson-Lindenstrauss lemma [JL84]). Say we are a dimension d, a probability
parameter δ ∈ (0, 1/2), fault tolerance ε ∈ (0, 1), a positive integer m > − ln δ

ε2
and any

vector xxx ∈ Rd. We pick a matrix M ∈ Rm×d whose entries are independent N (0, 1)’s and
consider Π = 1√

m
M . Then P [(1− ε) ∥xxx∥2 ≤ ∥Πxxx∥2 ≤ (1 + ε) ∥xxx∥2] ≥ 1 − δ. This is known

as the famous Johnson-Lindenstrauss dimensionality reduction. In fact, if we are given n
points xxx1, · · · ,xxxn ∈ Rd, by a union bound argument (because the above was for one xxx) we
can show that for m = O(ln(n/δ)/ε2), all the distances ∥xxxi − xxxj∥2 are preserved under a
random such Π with probability 1 − δ. For instance, with probability 0.99, we can reduce
the dimension to m = O(lnn/ε2), upto ε error. In other words, the existence of such a Π
has positive probability for small enough δ. Since the Π’s were combinatorial (i.e., chosen
from a finite set), we conclude that such a dimension-reducing Π always exists.
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We end with a variation of the Hoeffding bound and its relation to the geometry of
(convex) bodies in Rn. Suppose we have mean zero random variables X1, · · · , Xn with
Xi ∈ {−ai, ai} satisfying

∑
i a

2
i = 1. Then E [

∑
i X = 0]. (The two-sided tail version of)

Hoeffding bound gives P [|
∑

i Xi| ≥ t] ≤ 2 exp
{
− t2

4
∑

i a
2
i

}
= 2 exp {−t2/4}. In other words,

if aaa is a fixed vector with ∥aaa∥2 = 1 and YYY = (Y1, · · · , Yn) ∈ {±1}n is chosen uniformly at
random (so each Yi is an independent Rademacher), then P [|⟨aaa,YYY ⟩| ≥ t] ≤ 2 exp {−t2/4}.
A geometric interpretation is as follows. We call Cn := {±1}n as the boolean cube. |⟨aaa,YYY ⟩|
measures the distance of YYY from the hyperplane through 000 perpendicular to aaa. The above
bound just says that at least 1 − 2e−t2/4 fraction of the volume of Cn lies within distance
t from this hyperplane. This is the starting point of the realm of the vast area called
isoperimetric inequalities.
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