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Lecture 1

Examples 01/30/2024

1.1 Philosophy
Main philosophy of the probabilistic method: To prove existence of a structure (or a sub-
structure of a given one), define a probability space of structures, and show that a random
point in it satisfies the required properties with positive (often high) probability.

We will look at two examples today.

1.2 Example: Ramsey Theory
Definition 1 (Ramsey numbers)
For 𝑘, ℓ ≥ 1, let 𝑟 = 𝑟 (𝑘, ℓ) be the smallest integer, if there exists any, satisfying the following
property: for every coloring of edges of 𝐺 = 𝐾𝑟 (the complete graph on 𝑟 nodes) by red and
blue, either ∃ a blue 𝐾𝑘 ⊆ 𝐺 or a red 𝐾ℓ ⊆ 𝐺.

Example 1. 𝑟 (3, 3) = 6.

A special case of Ramsey’s theorem says that ∃𝑟 (𝑘, 𝑙) < ∞∀𝑘, 𝑙. The proof, by induction

(using Erdös-Szekeres theorem), gives 𝑟 (𝑘, ℓ) ≤
(
𝑘 + ℓ − 2

𝑘 − 1

)
. In particular, 𝑟 (𝑘, 𝑘) ≤

(2𝑘−2
𝑘−1

)
<

4𝑘 .

Remark 1
The following are easy to observe: 𝑟 (𝑘, ℓ) = 𝑟 (𝑙, 𝑘), 𝑟 (1, ℓ) = 1, 𝑟 (2, ℓ) = ℓ.

All the exactly known Ramsey numbers for ℓ ≥ 𝑘 ≥ 3 are 𝑟 (3, 3) = 6, 𝑟 (3, 4) = 9, 𝑟 (3, 5) =

14, 𝑟 (3, 6) = 18, 𝑟 (3, 7) = 23, 𝑟 (3, 8) = 28, 𝑟 (3, 9) = 36, 𝑟 (4, 4) = 18, 𝑟 (4, 5) = 25. It is only
known that 41 ≤ 𝑟 (3, 10) ≤ 42, 36 ≤ 𝑟 (4, 6) ≤ 40, 43 ≤ 𝑟 (5, 5) ≤ 48, and some similar bounds
for other Ramsey numbers.
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LECTURE 1. EXAMPLES 01/30/2024 3

Theorem 2 (Erdos ’47)

If
(
𝑛

𝑘

)
21−(

𝑘
2) < 1 then 𝑟 (𝑘, 𝑘) > 𝑛. Therefore 𝑟 (𝑘, 𝑘) ≥ [1 − 𝑜(1)] 𝑘

𝑒
2

𝑘−1
2 .

Proof. Take the complete graph on 𝑛 labelled vertices [𝑛] = {1, · · · , 𝑛}. Color each edge
{𝑖, 𝑗} (for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) randomly uniformly and independently either red or blue. For
fixed 𝐾 ⊆ [𝑛] with 𝑘 = |𝐾 |, the probability that the graph induced by 𝐾 is monochromatic
is 2−(

𝑘
2) + 2−(

𝑘
2) = 21−(

𝑘
2) . So

P [∃ such monochromatic 𝐾] ≤
∑︁
𝐾⊆[𝑛]
|𝐾 |=𝑘

P [𝐾 induces a monochromatic graph]

=

(
𝑛

𝑘

)
21−(

𝑘
2) given

< 1.

Therefore, P
[
� such monochromatic 𝐾

]
> 0. This means 𝑟 (𝑘, 𝑘) > 𝑛, which proves the first

part.

Now, (
𝑛

𝑘

)
21−(

𝑘
2) ≤ 2

( 𝑒𝑛
𝑘

) 𝑘
· 2−(

𝑘
2) = 2

(
𝑒𝑛

2
𝑘−1
2 · 𝑘

) 𝑘
where the first inequality is due to

(
𝑎

𝑏

)
≤

( 𝑒𝑎
𝑏

)𝑏
. If 𝑒𝑛

2
𝑘−1
2 ·𝑘

< 1 − 𝜀 then for 𝑘 > 𝑘0(𝜀) for

some 𝑘0(𝜀), the RHS is < 1. This implies that 𝑟 (𝑘, 𝑘) ≥ [1 − 𝑜(1)] 𝑘
𝑒
2

𝑘−1
2 .1 ■

Remark 2
The lower bound was improved only by a factor of two since 1947.
The upper bound was improved several times, last time in 2023 by Campos, Griffiths, Morris,
Sahasrabudhe to (4 − 𝜀)𝑘 , for an absolute constant 𝜀 > 0.
Open: Does lim 𝑟 (𝑘, 𝑘)1/𝑘 exist (for USD 100)? If exists, find it (for USD 250).

Remark 3
Open problem: Find an explicit coloring showing 𝑟 (𝑘, 𝑘) > 1.0001𝑘 .

Remark 4
This proof provides a randomized algorithm for finding a coloring that shows 𝑟 (𝑘, 𝑘) >

⌊√
2𝑘
⌋
.

But given such a coloring, we don’t know how to efficiently check that � a monochromatic
𝐾𝑘 .

1Explanation for the last ‘implies’: We note that for every 𝑛 satisfying the given condition, we have
𝑟 (𝑘, 𝑘) > 𝑛. Now for any 𝑛 < [1 − 𝜀] 𝑘

𝑒
2

𝑘−1
2 , the condition is satisfied. Thus, 𝑟 (𝑘, 𝑘) is more than all such 𝑛’s,

which is written as [1 − 𝑜(1)] 𝑘
𝑒
2

𝑘−1
2 .
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1.3 Example: Dominating Sets
Definition 3
If 𝐺 = (𝑉, 𝐸) is a graph, we say 𝑆 ⊆ 𝑉 is dominating if ∀𝑣 ∈ 𝑉 ∖𝑆∃𝑢 ∈ 𝑆 such that {𝑢, 𝑣} ∈ 𝐸 .

Example 2. The set of bold vertices in
◦ • ◦

• ◦
form a dominating set.

Theorem 4
If 𝐺 = (𝑉, 𝐸) is a graph with |𝑉 | = 𝑛 and minimum degree 𝛿, then it has a dominating set of

size at most 𝑛 · 1 + ln(1 + 𝛿)
1 + 𝛿 .

Proof. Let 𝑝 =
ln(1+𝛿)
1+𝛿 . Clearly 𝑝 ∈ [0, 1]. Let 𝑋 ⊆ 𝑉 be a random subset of 𝑉 obtained by

choosing each 𝑣 ∈ 𝑉 to randomly and independently lie in 𝑋 with probability 𝑝. Since 𝑋 is
not necessarily a dominating set, we can alter it by

𝑌𝑋 B
{
𝑣 ∈ 𝑉 ∖ 𝑋

�� �𝑢 ∈ 𝑋 with {𝑢, 𝑣} ∈ 𝐸
}
.

By construction, 𝑋 ⊔ 𝑌𝑋 is a dominating set (note that they are disjoint).

Let’s estimate the expected size of 𝑋 ∪ 𝑌𝑋 . First observe that E [|𝑋 ∪ 𝑌𝑋 |] = E [|𝑋 | + |𝑌𝑋 |]
due to disjointness, and this is further equal to E [|𝑋 |] + E [|𝑌𝑋 |] by linearity of expectation.
|𝑋 | is a sum of independent indicators, one for each vertex which takes 1 with probability 𝑝
and 0 with probability 1 − 𝑝. So E [|𝑋 |] = 𝑛𝑝.
Note that P [𝑣 ∈ 𝑌𝑋] = P [𝑣 ∉ 𝑋] · P [no neighbor of 𝑣 is in 𝑋] = (1 − 𝑝)𝑑𝑣 ≤ (1 − 𝑝)1+𝛿 = 1

1+𝛿
where 𝑑𝑣 is the degree of 𝑣 in 𝐺. Again |𝑌𝑋 | =

∑
𝑣∈𝑉 111𝑣∈𝑌𝑋 whence E [|𝑌𝑋 |] ≤ 𝑛

1+𝛿 .

This means E [|𝑋 ∪ 𝑌𝑋 |] ≤ 𝑛

[
1+ln(1+𝛿)

1+𝛿

]
. Since the ‘average size’ of a dominating set is less

than or equal to the given quantity, ∃ a choice of 𝑋 such that 𝑋 ∪𝑌𝑋 is a dominating set of

size at most 𝑛 · 1 + ln(1 + 𝛿)
1 + 𝛿 . ■

Remark 5
We used linearity of expectation: E [𝑋 + 𝑌 ] = E [𝑋] +E [𝑌 ]. We also used alteration: making
a change after initial random choice, in this case we added 𝑌𝑋 to 𝑋. (To be discussed more)

Remark 6
Here ∃ an efficient algorith to find such a dominating set. Start with ∅ and keep adding
vertices that dominate maximum of yet non-dominated vertices.

Remark 7
Estimate is essentially that for 𝑛 ≫ 𝛿 ≫ 1.
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Examples continued from last lecture.

2.1 Example: Hypergraph 2−coloring
Definition 5
A hypergraph is a pair 𝐻 = (𝑉, 𝐸) of (finitely many) vertices 𝑉 and edges 𝐸 ⊆ 2𝑉 .

We say a hypergraph is 𝑛−uniform if |𝑒 | = 𝑛∀𝑒 ∈ 𝐸 . In particular, graphs are 2−uniform
hypergraphs.

We say a hypergraph is said to be 2−colorable if there exists a coloring of 𝑉 with red and
blue with no monochromatic edge.

We define the quantity

𝑚(𝑛) B min {|𝐸 | | (𝑉, 𝐸) is 𝑛 − uniform hypergraph and not 2 − colorable}

and interested in its asymptotics.

It is known that 𝑚(1) = 1, 𝑚(2) = 3, 𝑚(3) = 17, 𝑚(4) = 23 and for 𝑛 ≥ 5, 𝑚(𝑛) are unknown.

Proposition 6
𝑚(𝑛) ≥ 2𝑛−1 for 𝑛 ≥ 2.

Proof. For the sake of contradiction, let 𝐻 = (𝑉, 𝐸) be 𝑛−uniform with |𝐸 | < 2𝑛−1. We
will show that 𝐻 is 2−colorable. Color randomly each vertex independently either red or
blue with probability half for each color. For each edge 𝑒 ∈ 𝐸 , let 𝐴𝑒 be the event that 𝑒 is
monochromatic. Then P [𝐴𝑒] = 2 ·

( 1
2

)𝑛
= 21−𝑛. This means that P [∪𝑒∈𝐸𝐴𝑒] ≤

∑
𝑒∈𝐸 P [𝐴𝑒] =

|𝐸 | · 21−𝑛 which is less than 1 by assumption. This means that the event that no edge is
monochromatic has positive probability, implying that there is a coloring for which there is
no monochromatic edge. By definition, this is a 2−coloring. ■

5
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Remark 8
The proof for lower bound of 𝑟 (𝑘, 𝑘) is a special case. Take 𝑛 =

(𝑘
2

)
. Vertices of the hypergraph

are 𝐸 (𝐾𝑛) and hyperedges are collections of
(𝑘
2

)
edges of 𝐾𝑛 that form a 𝑘−clique. So number

of hyperedges is
(𝑛
𝑘

)
.

Remark 9
It can be shown that 𝑚(𝑛) ≤ O(𝑛22𝑛−1), that is ∃𝑐 > 0 such that 𝑚(𝑛) ≤ 𝑐𝑛22𝑛−1 for all large
𝑛. Indeed if we take 2𝑛2 vertices and 𝑐𝑛22𝑛−1 random subsets of size 𝑛, then with positive
probability, every set of 𝑛2 vertices contains an edge. So not 2−colorable.
Note that the interesting quantity here is 𝑚(𝑛)

2𝑛−1
which is the expected number of monochro-

matic edges in a random coloring. Thus 1 ≤ 𝑚(𝑛)
2𝑛−1

≤ O(𝑛2).

Lower bound for 𝑚(𝑛)
2𝑛−1

has been improved by Beck, by Radhakrishnan + Srinivasan. Best
(short) proof is by Cherkashin and Kozik which is the following.

Theorem 7
If ∃𝑘 ≥ 1, 0 ≤ 𝑝 ≤ 1 such that 𝑘 (1 − 𝑝)𝑛 + 𝑘2𝑝 < 1 then 𝑚(𝑛) > 𝑘 · 2𝑛−1.

Proof. Let 𝑛, 𝑘, 𝑝 be as in the hypothesis of the theorem we’re proving. Let 𝐻 = (𝑉, 𝐸) be an
𝑛−uniform graph with |𝐸 | = 𝑘 ·2𝑛−1. For each 𝑣 ∈ 𝑉 pick 𝑥𝑣 ∈ [0, 1] uniformly randomly. (We
can assume that these 𝑥𝑣’s are unique because any two of them are equal with 0 probability).
These 𝑥𝑣’s define an ordering on the vertices, that is, we say 𝑣 < 𝑢 iff 𝑥𝑣 < 𝑥𝑢.

Now go over the vertices in increasing order and color each vertex blue unless forced to
color it red (namely, the vertex appears as the last vertex in an otherwise blue edge). By
construction, there is no blue edge. But there can be a red edge. Let’s look at probability
that such a thing happens.

Define 𝐿 =

[
0, 1−𝑝2

)
, 𝑀 =

[
1−𝑝
2 ,

1+𝑝
2

)
, 𝑅 =

[
1+𝑝
2 , 1

]
. Let 𝐴𝑒 be the event that edge 𝑒 ∈ 𝐸

is fully contained in 𝐿 or fully contained in 𝑅, and define 𝐴 B
⋃
𝑒∈𝐸 𝐴𝑒. Then P [𝐴𝑒] =

P [𝑥𝑣 ∈ 𝐿∀𝑣 ∈ 𝑒] + P [𝑥𝑣 ∈ 𝑅∀𝑣 ∈ 𝑒] = 2P [𝑥𝑣 ∈ 𝐿∀𝑣 ∈ 𝑒] = 2 ·
(
1−𝑝
2

)𝑛
. Thus

P [𝐴] ≤
∑︁
𝑒∈𝐸
P [𝐴𝑒]

≤ 𝑘 · 2𝑛−1 · 2 ·
(
1 − 𝑝
2

)𝑛
= 𝑘 (1 − 𝑝)𝑛.

Suppose the event
⋃
𝑒∈𝐸

𝐴𝑒 does not happen and there is a red edge. The former means every

edge has one vertex each in at least two of 𝐿, 𝑀, 𝑅. Consider the first red edge 𝑒0, that
is, the edge 𝑒 with lowest value of min

𝑣∈𝑒
𝑥𝑣 among red edges. Let 𝑣0 be the first vertex in

𝑒0. Clearly 𝑣0 ∉ 𝑅, else 𝑒0 would be completely in 𝑅. Also, 𝑣0 ∉ 𝐿 because otherwise 𝑣0
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is the last edge of some otherwise blue edge which would hence completely be in 𝐿. Thus
𝑣0 ∈ 𝑀. Say 𝑣0 is the last vertex of 𝑓0 ∈ 𝐸 . Altogether, we care that there are two edges
𝑒0, 𝑓0 with 𝑒0 ∩ 𝑓0 = {𝑣0} and 𝑣0 ∈ 𝑀, also called a conflicting pair of edges. Also in this
case, the probability that 𝑣0 is the last vertex of 𝑓0 is P

[
𝑥𝑢 ≤ 𝑥𝑣0∀𝑢 ∈ 𝑓0 ∖ {𝑣0}

]
= 𝑥𝑛−1𝑣0

, and
the probability that 𝑣0 is the first vertex of 𝑒0 is P

[
𝑥𝑢 ≥ 𝑥𝑣0∀𝑢 ∈ 𝑒0 ∖ {𝑣0}

]
= (1 − 𝑥𝑣0)𝑛−1,

because |𝑒0 | = | 𝑓0 | = 𝑛 (by 𝑛−regularity of 𝐻). Thus

P [𝐴𝑐 ∩ {∃ red edge}] ≤ P [there is a conflicting pair of edges]
≤

∑︁
(𝑒, 𝑓 )∈𝐸×𝐸
|𝑒∩ 𝑓 |=1

P [(𝑒, 𝑓 ) is a conflicting pair]

=
∑︁

(𝑒, 𝑓 )∈𝐸×𝐸
|𝑒∩ 𝑓 |=1

P [(𝑒 ∩ 𝑓 ⊆ 𝑀) ∩ (𝑒 ∖ (𝑒 ∩ 𝑓 ) ⊆ 𝐿) ∩ ( 𝑓 ∖ (𝑒 ∩ 𝑓 ) ⊆ 𝑅)]

=
∑︁

(𝑒, 𝑓 )∈𝐸×𝐸
|𝑒∩ 𝑓 |=1

P [𝑒 ∩ 𝑓 ⊆ 𝑀] · P [𝑒 ∖ (𝑒 ∩ 𝑓 ) ⊆ 𝐿] · P [ 𝑓 ∖ (𝑒 ∩ 𝑓 ) ⊆ 𝑅]

=
∑︁

(𝑒, 𝑓 )∈𝐸×𝐸
|𝑒∩ 𝑓 |=1

𝑝 · 𝑥𝑛−1𝑒∩ 𝑓 · (1 − 𝑥𝑒∩ 𝑓 )
𝑛−1

≤
∑︁

(𝑒, 𝑓 )∈𝐸×𝐸
|𝑒∩ 𝑓 |=1

𝑝 ·max
𝑥∈𝑀

[𝑥(1 − 𝑥)]𝑛−1

≤ (𝑘 · 2𝑛−1)2 · 𝑝 ·max
𝑥∈𝑀

[𝑥(1 − 𝑥)]𝑛−1

= 𝑘2 · 4𝑛−1 · 𝑝 · 1

4𝑛−1
= 𝑝𝑘2

So P [∃ red edge] ≤ P [𝐴] + P [𝐴𝑐 ∩ {∃ red edge}] ≤ 𝑘 (1 − 𝑝)𝑛 + 𝑘 𝑝2. This quantity is < 1,
whence P

[
� red edge

]
> 0. This means that there is a coloring such that there is no red

edge (there was no blue edge by construction). By definition, this is a 2−coloring. So 𝑚(𝑛)
must be greater than the number of edges of this graph, namely 𝑘 · 2𝑛−1. ■

Corollary 8
𝑚(𝑛) > 2𝑛−2 ·

√︁
𝑛

ln 𝑛 .

Proof. If 𝑘 = 1
2

√︁
𝑛

ln 𝑛 and 𝑝 = ln 𝑛
𝑛

. Then 1 − 𝑝 ≤ 𝑒−𝑝 =⇒ 𝑘 (1 − 𝑝)𝑛 ≤ 𝑘𝑒−𝑝𝑛 = 𝑘
𝑛
.

Therefore 𝑘2𝑝 + 𝑘 (1 − 𝑝𝑛) ≤ 𝑛
4 ln 𝑛 · ln 𝑛

𝑛
+

√
𝑛

2𝑛
√
ln 𝑛

= 1
4 + 1

2
√
𝑛 ln 𝑛

< 1. By the above theorem,

𝑚(𝑛) > 𝑘 · 2𝑛−1 = 2𝑛−2 ·
√︁

𝑛
ln 𝑛 . ■
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2.2 Example: Set Pairs
Theorem 9 (Bollobas)
Let (𝐴𝑖, 𝐵𝑖) for 1 ≤ 𝑖 ≤ ℎ be pairs of subsets of Z satisfying that 𝐴𝑖∩𝐵𝑖 = ∅∀𝑖, 𝐴𝑖∩𝐵 𝑗 ≠ ∅∀𝑖 ≠ 𝑗

and |𝐴𝑖 | = 𝑘, |𝐵𝑖 | = ℓ∀𝑖. Then ℎ ≤
(𝑘+ℓ
𝑘

)
.

(This is tight: Take |𝑋 | = 𝑘 + ℓ and (𝐴𝑖, 𝐵𝑖) are partitions of 𝑋 to disjoint sets of sizes 𝑘, ℓ.)

Proof. Order
ℎ⋃
𝑖=1

𝐴𝑖∪𝐵𝑖 randomly. Let 𝐸𝑖 be the event that 𝐴𝑖 precedes 𝐵𝑖, that is, max 𝐴𝑖 <

min 𝐵𝑖. Note that P [𝐸𝑖] =
(𝑘+ℓ
𝑘

)−1
. Also, events are pairwise disjoint, since if both 𝐸𝑖, 𝐸 𝑗

occur together and (WLOG) max 𝐴𝑖 ≥ max 𝐴𝑖 then min 𝐵𝑖 > max 𝐴𝑖 ≥ max 𝐴 𝑗 so 𝐴 𝑗∩𝐵𝑖 = ∅
which cannot happen. This means that ℎ ·

(𝑘+ℓ
𝑘

)−1
=
∑
𝑖 P [𝐸𝑖] = P [

⋃
𝑖 𝐸𝑖] ≤ 1. ■



Lecture 3

EΣ = ΣE or E
∫

=
∫
E 02/06/2024

Theorem 10 (Linearity of Expectation(LoE))
If 𝑋1, · · · , 𝑋𝑛 are random variables and 𝑋 =

∑
𝑐𝑖𝑋𝑖 for some 𝑐𝑖 ∈ R, then E [𝑋] = ∑

𝑐𝑖E [𝑋𝑖].

Proof. Follows from definition of expectation. ■

The applications often try to define 𝑋𝑖 so that computing E [𝑋𝑖] is simple: often 𝑋𝑖 are
indicators. Usually one uses the fact that ∃ a point with 𝑋 > E [𝑋] (or 𝑋 < E [𝑋]), unless
each point takes equal value.

3.1 Example: Sum-free subsets
Definition 11
𝐵 ⊆ some Abelian group is said to be sumfree if (𝐵 + 𝐵) ∩ 𝐵 = ∅, that is, �𝑎, 𝑏, 𝑐 ∈ 𝐵 such
that 𝑎 + 𝑏 = 𝑐.

Theorem 12
∀𝐴 ⊆ Z ∖ {0} with |𝐴| = 𝑛, ∃𝐵 ⊆ 𝐴 such that 𝐵 is sumfree and has at least 𝑛

3 elements.

Proof. Let 𝑝 = 3𝑘 + 2 be a prime such that
∏
𝑎∈𝐴 𝑎 is not divisible by 𝑝. Take 𝑀 =

{𝑘 + 1, · · · , 2𝑘 + 1}. Note that 𝑀 is sumfree modulo 𝑝. Pick 𝑥 ∈ {1, · · · , 𝑝 − 1} uniformly
randomly. Put 𝐵𝑥 = {𝑎 ∈ 𝐴 | (𝑎𝑥)%𝑝 ∈ 𝑀}. This implies that ∀𝑥, 𝐵𝑥 is sumfree in Z.
Indeed if (𝑎𝑥)%𝑝 + (𝑏𝑥)%𝑝 = (𝑐𝑥)%𝑝 for some 𝑎, 𝑏, 𝑐 ∈ 𝑀 then (𝑎 + 𝑏)𝑥 � 𝑐𝑥 (mod 𝑝)
whence 𝑎 + 𝑏 � 𝑐 (mod 𝑝) because (𝑥, 𝑝) = 1, contradicting the fact that 𝑀 is sumfree
modulo 𝑝. We compute E [|𝐵𝑥 |]. 𝐵𝑥 comprises all those elements 𝑎 ∈ 𝐴 such that 𝑎𝑥
is some element in 𝑀 modulo 𝑝. So for each 𝑎 take an indicator 111𝑎∈𝐵𝑥

= 111(𝑎𝑥)%𝑝∈𝑀 | 𝑥.
With this, |𝐵𝑥 | =

∑︁
𝑎∈𝐴

111(𝑎𝑥)%𝑝∈𝑀 | 𝑥 and P [(𝑎𝑥)%𝑝 ∈ 𝑀 | 𝑥] = 𝑘+1
𝑝−1 > 1

3 . Thus E [|𝐵𝑥 |] =∑︁
𝑎∈𝐴
E
[
111(𝑎𝑥)%𝑝∈𝑀 | 𝑥

]
=
∑︁
𝑎∈𝐴
P [(𝑎𝑥)%𝑝 ∈ 𝑀 | 𝑥] > |𝐴| /3 =

𝑛

3
. So ∃𝑥 for which |𝐵𝑥 | > 1

3 . ■

9
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Remark 10
Eberhardt, Green+Manners showed that 1

3 is tight. however it is conjectured that ∀𝑐 >
0∃𝑛0 = 𝑛0(𝑐) such that if 𝑛 > 𝑛0 then ∀𝐴 ⊆ Z∖ {0} and |𝐴| = 𝑛, 𝐴 contains a sumfree subset
of size at least 𝑛

3 + 𝑐.

Remark 11
Proof gives an efficient deterministic algorithm to find such 𝐵, given 𝐴.

Remark 12
Alon+Kleitman proved that ∀ Abelian group 𝐻 and ∀𝐴 ⊆ 𝐻∖ {0} with |𝐴| = 𝑛, ∃𝐵 ⊆ 𝐴 such
that 𝐵 is sumfree and has size > 2𝑛

7 , where 2
7 is tight as shown by 𝐴 = (Z7)𝑘 ∖ {0}.

3.2 Hamilton paths
Historically the first application of the probabilistic method in combinatorics is considered
to be a result of Szele (1943) on Hamilton paths in tournaments.

Definition 13 (Tournament, Hamilton path, Hamilton cycle)
A tournament 𝑇 on 𝑛 vertices is an oriented complete graph on 𝑛 vertices.
A Hamilton path in 𝑇 is a directed path passing through every vertex exactly once.
A Hamilton cycle in 𝑇 is a directed cycle passing through every vertex exactly once.

𝑇 is said to be transitive if it contains no directed cycles (equivalently, ∃𝜎 ∈ 𝑆𝑛 such that
(𝜎𝑖, 𝜎𝑗 ) ∈ 𝐸 ⇐⇒ 𝑖 < 𝑗).
Can prove by induction: Every tournament contains a Hamilton path.
So, a transitive tournament has only one such path.

Denote 𝑃(𝑛) = max possible number of Hamilton paths in a tournament on 𝑛 vertices.

Theorem 14 (Szele)
𝑃(𝑛) ≥ 𝑛!

2𝑛−1
.

Proof. Let 𝑇 be a random tournament on 𝑛 vertices {1, · · · , 𝑛}, that is, for each pair {𝑖, 𝑗}
pick randomly uniformly either (𝑖, 𝑗) or ( 𝑗 , 𝑖) to be and edge in 𝑇 . We count the number of
Hamilton paths 𝑖1 → · · · → 𝑖𝑛. So, for each permutation 𝜎 ∈ 𝑆𝑛 consider the indicator 𝑋𝜎 =

111𝜎1→···→𝜎𝑛 is Hamilton path in 𝑇 . Then number of Hamilton paths in 𝑇 is 𝑋𝑇 =
∑
𝜎∈𝑆𝑛 𝑋𝜎. Then

E [𝑋𝑇 ] =
∑
𝜎∈𝑆𝑛 E [𝑋𝜎]

(∗)
= 𝑛! · P [1 → · · · → 𝑛 is Hamilton path in 𝑇] = 𝑛!

2𝑛−1
, where (∗) holds

because P [1 → · · · → 𝑛 is Hamilton path in 𝑇] = P [𝜎1 → · · · → 𝜎𝑛 is Hamilton path in 𝑇]
for any 𝜎 ∈ 𝑆𝑛. Thus there is some tournament on [𝑛] which has at least 𝑛!

2𝑛−1
Hamilton

paths, which simply implies that 𝑃(𝑛) ≥ 𝑛!
2𝑛−1

. ■

Szele also proved (without using probability) that 𝑃(𝑛) ≤ O
(

𝑛!
23𝑛/4

)
and that lim𝑛→∞

(
𝑃(𝑛)
𝑛!

) 1
𝑛

exists (thus between 1
2 and 2−

3
4 ). It’s conjectured to be 1

2 .
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We’ll see a proof of the above (proven) fact using some results on permanents of 0/1 matrices
and linearity of expectation.

Definition 15 (Permanent)

The permanent of an 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖 𝑗 ) is Per 𝐴 =
∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑖=1

𝑎𝑖,𝜎(𝑖).

If 𝑇 = (𝑉, 𝐸) is a tournament on 𝑉 = [𝑛], we can define its adjacency matrix 𝐴 = (𝑎𝑖 𝑗 ) where
𝑎𝑖 𝑗 = 111(𝑖, 𝑗)∈𝐸 . Note that Per 𝐴 is equal to the number of spanning 1−regular subgraphs of 𝑇 ,
which is also equal to the number of subgraphs which are vertex disjoint unions of directed
cycles. This quantity is at least as many as the number of Hamilton cycles in 𝑇 . We will
(prove and) use the following theorem:

Theorem 16 (Minc conjecture, proved by Bregman)
If 𝐴 = (𝑎𝑖 𝑗 ) ∈ {0, 1}𝑛×𝑛 then

Per 𝐴 ≤
𝑛∏
𝑖=1

(𝑟𝑖!)
1
𝑟𝑖

where 𝑟𝑖 =
∑︁

1≤ 𝑗≤𝑛
𝑎𝑖 𝑗 is the number of 1’s in row 𝑖.

Remark 13
This bound is tight for matrices with square blocks of 1′𝑠. If 𝐴 is a square block containing
only 1’s, then 𝑟𝑖 = 𝑛 whence the RHS of the above inequality is 𝑛! which is precisely Per 𝐴,

in this case. If 𝐴 =


𝐴1

𝐴2
. . .

𝐴𝑟


where 𝐴𝑖 ∈ {1}𝑠𝑖×𝑠𝑖 then Per 𝐴 =

∏𝑟
𝑖=1 𝑠𝑖! and the RHS

is exactly this quantity.
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Last time we saw linearity of expectation and its application in Hamiltonian paths.

We had stated Theorem 16: If 𝐴 = (𝑎𝑖 𝑗 ) ∈ {0, 1}𝑛×𝑛 and 𝑟𝑖 =
∑
𝑗 𝑎𝑖 𝑗 then Per 𝐴 ≤ (∏𝑖 𝑟𝑖!)

1
𝑟𝑖 .

Assuming this theorem, we can upper bound 𝑃(𝑛) = maximum number of Hamiltonian paths
in a tournament on [𝑛]. Let’s also define 𝐻 (𝑛) = maximum number of Hamiltonian cycles
in a tournament on [𝑛].

We need a few lemmas before our main discussion.

Lemma 17
If 𝑏 > 𝑎 + 1 > 1 are integers then

(𝑏!) 1𝑏 (𝑎!) 1
𝑎 < [(𝑏 − 1)!]

1
𝑏−1 [(𝑎 − 1)!] 1

𝑎−1 .

Proof. Consider 𝑓 (𝑥) =
[(𝑥 − 1)!] 1

𝑥−1

(𝑥!) 1𝑥
on the integers. Check that this function is strictly

increasing. ■

Lemma 18
𝑃(𝑛) ≤ 𝐻 (𝑛 + 1)∀𝑛.

Proof. Let 𝑇 be a tournament on [𝑛] with 𝑃(𝑛) Hamilton paths. Let 𝑇 ′ be 𝑇 with an
additional vertex with all edges between 𝑥 and 𝑉 (𝑇) oriented randomly. For each fixed
Hamilton path 𝑃 in 𝑇 , let 𝑋𝑃 be the indicator that 𝑃 is a part of a Hamilton cycle in 𝑇 ′.
But E [𝑋𝑃] = 1

4 because among the following situations, only the blue situation is possible
(so one out of four).

12
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• • • •

... •𝑥
... •𝑥

... •𝑥
... •𝑥

• • • •

By linearity of expectation, expected number of Hamiltonian cycles in 𝑇 ′ is 𝑃(𝑛)
4 and this

quantity is bounded above by 𝐻 (𝑛 + 1). ■
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