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1 Motivation

1.1 Introduction

We all know M(n,R) and have seen this in many different ways.

1. Vector space: we can add matrices and multiply by complex scalars.

2. Ring: we can multiply square matrices.

3. Geometry: You can think it as literally Rn2

, just with the linear ‘look’ of Rn2

being changed
to a tabular form. It’s possible to measure distances. Some examples:

• ‖M‖ =
∑

1≤i,j≤n
|Mij |

• ‖M‖p,q =

{
n∑
j=1

{
n∑
i=n

|Mij |p
} q

p

} 1
q

4. Manifold: umm...

1.2 What is a manifold?

Think of placing ‘charts’ on a surface, so that there is no roughness or fold-lines on the chart - in
other words, we should be able to pick up a small region on the surface and smoothly deform it into
R2 in a one-one way. And these charts are ‘stitched’ smoothly.
Well, for a manifold, you would allow this to happen for Rn for any n ≥ 1, not just R2. Since we
know how to do calculus on Rn, and we can easily (and smoothly) transition between charts and
Rn, we know how to do calculus in any manifold.

Definition 1.1 (Submanifolds of Rn). A subset M ⊆ Rn is said to be an m-dimensional sub-
manifold of Rn if ∀x ∈ M,∃W ⊂

open
Rn containing x such that W ∩M is diffeomorphic to some

U ⊂
open

Rm.

The diffeomorphism ψ : U →W ∩M is called a parameterization.

We’ll often denote by ϕ the inverse of the above ψ. We’ll often index the above ψ,ϕ with the point x.
Let’s look at some ways to build new manifolds from known ones. We indeed look at some lemmas.

1



Proposition 1.2. Let M ⊆ Rn be a submanifold of dimension m and M ′ ⊂
open

M . Then M ′ is a

manifold of dimension m.

Proof. Fix x ∈M ′ ⊆M . Then ϕx : Wx ∩M → Ux is a diffeomorphism, where the symbols mean as
in the above definition. The restriction of ϕx to M ′ does the job. �

Example. We can note that M(n,R) = Rn2

is a manifold and det : Mn(R) → R is continuous,
and thus GLn(R) = det−1(R r {0}) is an open sebset of Mn(R). Conclude that GLn(R) is an n2

dimensional manifold.

Theorem 1.3 (Implicit function theorem). Let m < n,Ω ⊂
open

Rn, ϕ ∈ C 1 (Ω,Rm). Let Mc =

ϕ−1(c) be non-empty such that Jϕ(x) has full rank (namely, m) ∀x ∈Mc. Then Mc is an (n−m)-
dimensional submanifold of Rn.

We are not going to prove the above theorem. However this will be useful in building manifolds.

Example (ϕ(x, y) = y − ex). ϕ ∈ C 1(R2,R). So n = 2,m = 1 here. M0 = {(x, ex) : x ∈ R}.
Jϕ(x, y) =

[
−ex 1

]
. This has rank 1 always. The graph of this function is a manifold of dimension

n−m = 1.
A manifold having dimension 1 (that is, parameterized by only one variable) simply means that it
is a ‘curve’.

Example (ϕ(x, y, z) = x2 + y2 + z2). ϕ ∈ C 1(R3,R). So n = 3,m = 1 here. M1 = S2.
Jϕ(x, y, z) =

[
2x 2y 2z

]
. This has rank 1 always. The graph of this function is a manifold of

dimension n−m = 2.
A manifold having dimension 2 (that is, parameterized by two variables) means that it is a ‘surface’.

Example (Special mention: ϕ(x) = 0). ϕ ∈ C 1(Rn,R0). Som = 0 here. M0 = {x ∈ Rn : ϕ(x) = 0} =
Rn. Jϕ(x, y, z) =

[
0 0 · · · 0

]
. This has rank 0 (full!) always. The graph of this function is a

manifold of dimension n−m = n.
Here, the manifold is characterized by n independent parameters.

1.3 Lie Groups

A Lie group is a group G which is also a manifold, where g 7→ g−1 and (g, h) 7→ gh are smooth.
We saw above that GL(n,R) is a Lie group. From now, we will refer to eij as the matrix having 1
at position (i, j) and 0 elsewhere (dimension of the matrix will be clear form the context).

Example (SL(n,R)). Consider det : M(n,R)→ R. I invite the reader to prove that DH det(A) =
Tr(adj(A)H) as an exercise. Here DH is the directional derivative along H. Then A ∈ SLn(R) =
det−1(1) =⇒ D det(A) =

∑
i,j

Deij (A)eij has rank 1. So, SL(n,R) is a manifold of dimension n2−1.

Example (t(n,R)). Define t(n,R) to be the set of all n × n strictly upper triangular matrices

with entries from R. This is simply R
n(n−1)

2 . Let n′(n,R) be the set of all n × n (non-strict) lower

triangular matrices with entries from R. This is simply R
n(n+1)

2 . Define π : M(n,R) → n′(n,R) be

given by
∑
i,j

aijeij 7→
∑
i≥j

aijeij . Then t(n,R) = π−1(0). We can note that the rank of Dπ is n(n+1)
2

(full!). This says that t(n,R) is a n(n−1)
2 -dimensional manifold.
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Example (O(n,R)). Let ϕ = (A 7→ AtA) : M(n,R) → M(n,R), α = π ◦ ϕ : M(n,R) → n′(n,R)
where π is the map in the previous example. We claim that ϕ−1(I) = α−1(I).
Indeed, ϕ(A) = I =⇒ α(A) = π(I) = I. And suppose α(A) = I which just means that
the elements of AtA are all 1 on diagonal and all 0 below diagonal. If i > j then (AtA)ji =

〈Aej , Aei,=〉 〈Aei, Aej ,=〉 etiAtAej = (AtA)ij = 0. This just means that AtA has all 0 above the

diagonal. It follows that AtA = I.

One can check that Dα(A) has rank n(n+1)
2 ∀A ∈ α−1(I) = ϕ−1(I) = O(n,R). It follows that

O(n,R) is a n(n−1)
2 -dimensional manifold.

Example (SO(n,R)). This is the (open) connected component of O(n) with all matrices having

det = 1, that is, SO(n,R) = det|−1O(n,R) (Rr {1}). It follows that SO(n,R) is a manifold, having the

same dimension as O(n,R), that is n(n−1)
2 .

1.4 Tangent spaces and Derivations

Example. (How to compute tangents?) Let’s consider ϕ(x, y, t) = (x − y, y − t2) along with the
level set M(1,0) =

{
(x, y, t) : x− y = 1, y = t2

}
=
{(

1 + t2, t2, t
)

: t ∈ R
}

. Call this curve γ. We all
know how to compute the tangent at, say, p = (2, 1,−1).
We first ‘solve’ for m = 2 coordinates in terms of the other ‘free’ n − m = 1 coordinates: x =
1 + t2, y = t2. Then ẋ = 2t, ẏ = 2t, ṫ = 1 so that the required direction of the ‘velocity’ at the point
(2, 1,−1) is just v = (−2,−2, 1).
But we want the line to be passing through p. So we say that out line is just given by {p+ vs : s ∈ R}.
One thing to note is that γ(−1 + s) = γ(−1) + γ̇(−1)s+ · · · . However for all out purposes (because
we want our tangent spaces to be linear spaces!), we’ll take Rv to be our tangent space.

1.4.1 Derivatives

Let f : Ω ⊂
open

Rm → Rn be a function and p ∈ Ω. We say f is differentiable at p if there is a linear

map T : Rm → Rn satisfying

lim
h→0

‖f(p+ h)− f(p)− Th‖
‖h‖

= 0.

It can be proven that such a map T , if exists, is unique. We say T = Df(p) = f ′(p) is the
derivative of f at p.
Now, fix a ‘direction’ v ∈ Rm. The directional derivative of f at p along v is given by

Dv(f)(p) = lim
t→0

f(p+ tv)− f(v)

t

It turns out that Dv(f)(p) =
〈
v,f ′(p)

〉
is true for sufficiently ‘nice’ functions.

1.4.2 Tangent spaces

Let M be a manifold. We say γ : (−ε, ε)→M is a smooth path in M through p in M if γ ∈ C 1

and γ(0) = p. The velocity of γ at θ ∈ (−ε, ε) is vγ(θ) = γ′(θ).
Now fix a point a ∈M . Consider the smooth paths in M passing through a and consider the linear
span of their velocities. We call this the tangent space Ta of M at a.
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1.4.3 Derivations

Recall the multiplication rule for derivatives: D(uv) = (Du)v + u(Dv). We also know that the
derivative is a linear. Let’s try to generalize this notion.

Let p ∈ Rn. Consider the set of all pairs (U,f) where U ⊆ Rn is an open neighbourhood of p, and

f ∈ C∞(U,R). We define an equivalence relation
p∼ by: (U,f)

p∼ (V, g) ⇐⇒ ∃W ⊂
open

U ∩V, a ∈W

such that f |W = sg|W .

If h ∈ C∞(A,R) with a ∈ A ⊂
open

Rn then the germ of h is the equivalence class of h under
a∼. The

set of all germs (C∞ maps) at a particular point a ∈ Rn (i.e., set of all such equivalence classes) is
denoted by C∞a . This is really an R-algebra.

Definition 1.4 (Derivation). An R-linear map D : C∞a → R is said to be a derivation at a if
D(uv) = (Du) · v(a) + u(a) · (Dv).

One just can’t avoid noticing that the set of derivations (at a specified point) is itself a vector space.

Example. Di,a =
∂

∂xi

∣∣∣∣
a

is a derivation on C∞a . These, in fact, form a basis for the set of derivations

Dera at a.

1.5 Putting together

Let V ⊂
open

Rn and γ be a curve in V through a. It can be shown that Ta ∼= Rn. Now, for a smooth

curve γ passing through a, define

Dγ,a(fa) =
d

dt
(f ◦ γ)(t)

∣∣∣∣
a

[= 〈∇(f)(a), γ̇(0)〉] .

Note f ′(a) depends only on the germ of (U,f) at a. This means Dγ,a depends only on the velocity
vector γ̇(0). This gives an injective (check!) linear rule Ta → Dera. Since both of these R-vector
spaces have dimension n, we can conclude that the above rule is an isomorphism. So, Ta ∼= Dera.

Lie algebras arise as tangent spaces to Lie groups at the identity. Just like groups study symmetries,
Lie algebras study derivations. The above should make it clear that why tangent spaces give arise
to the the study of derivations.

2 Lie algebras

2.1 Introduction

Definition 2.1 (Lie algebra). A vector space L over a field F with an operation [·, ·] : L× L→ L
(so (x, y) 7→ [x, y] or [xy]) is called a Lie algebra over F if:

1. [·, ·] is bilinear.

2. [xx] = 0∀x ∈ L.

3. [x [yz]] + [y [zx]] + [z [xy]] = 0∀x, y, z ∈ L.
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Some small observations:

1. 0 = [x+ y, x+ y] = [xx] + [xy] + [yx] + [yy] = [xy] + [yx] =⇒ [xy] = − [yx]. In fact, this
statement is equivalent to the second statement above, whenever charF 6= 2.

2. [x [yz]] + [y [zx]] + [z [xy]] = 0 ⇐⇒ [x [yz]] = − [y [zx]] − [z [xy]] = [y,− [zx]] + [[xy] z] =
[y [xz]] + [[xy] z]

Definition 2.2. A Lie algebra L is said to be abelian if [LL] = 0.

Example (gl(V )). Let V be a finite dimensional (= n) F -vector space. Consider L = End(V ),
the associative algebra of endomorphisms of V , along with the commutator [AB] = AB − BA for
A,B ∈ L. Verify it’s a Lie algebra:

1. Bilinearity is clear.

2. [AA] = AA−AA = 0.

3. [A [BC]] + [B [CA]] + [C [AB]] = [A,BC − CB] + [B,CA−AC] + [C,AB −BA] = ABC −
ACB −BCA+ CBA+BCA−BAC − CAB +ACB + CAB − CBA−ABC +BAC = 0.

We shall use gl(V ) to distinguish the Lie algebra from the older associative algebra End(V ). The
notation is gl because it turns out to be the tangent space of the Lie group GL at the identity.
gl(n, F ) will denote the algebra of n×n matrices. A basis of gl(n, F ) = Mn(F ) is

{
eij = eie

t
j

}
1≤i,j≤n.

Example (R3). Endow L = R3 the usual cross product (x, y, z)×(a, b, c) = (yc−zb, za−xc, xb−ya).
Define [uv] = u× v.
(Exercise!) Turns out that u× (v ×w) = (u · v)w − (u ·w)v.
This gives u× (v ×w) + v × (w × u) +w × (u× v) = 0.
It is not hard to see that [·, ·] is bilinear and [uu] = u× u = 0.

Example (sl(V )). Let V be a finite dimensional (= n) F -vector space. Consider L = sl(V ) =
{T ∈ gl(V ) : Tr(T ) = 0}, along with the commutator [AB] = AB −BA for A,B ∈ L. To verify it’s
a Lie algebra, we do exactly what we did in the previous page.
sl(n, F ) will denote the algebra of n× n matrices with zero trace.
A basis of sl(n, F ) is {ei,j : i 6= j, 1 ≤ i, j ≤ n}

⋃
{ei,i − ei+1,i+1 : 1 ≤ i ≤ n− 1}.

Here, ei,j = eie
t
j .

An example to keep in mind is sl(2, F ). This will come up later. An ordered basis is

x =

[
0 1
0 0

]
h =

[
1 0
0 −1

]
y =

[
0 0
1 0

]
.

2.2 Abstract Lie algebras

Let L be a finite dimensional F -vector space with basis {ei}ni=1. And suppose we know the com-

mutator [·, ·] on L (i.e., we know [ei, ej ]). At a more atomic level, if we say that [ei, ej ] =
n∑
k=1

akijek,

then we know all the n3 numbers
{
akij : 1 ≤ i, j, k ≤ n

}
. In fact, those akij ’s, for which i ≥ j, can

be deduced from the others because [xy] = − [yx]. You might observe that these are the only num-
bers which can uniquely determine my commutator (of course, not arbitrary numbers: for example,
taking ak11 = 1 is absurd).
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Proposition 2.3. Consider a set of n3 numbers
{
akij ∈ F : 1 ≤ i, j, k ≤ n

}
(indexed by i, j, k)

satisfying
akii = akij + akji = 0 1 ≤ i, j, k ≤ n

n∑
k=1

(
akija

m
kj + akjla

m
ki + aklia

m
kj

)
= 0 1 ≤ i, j,m ≤ n

uniquely determines the commutator of a Lie algebra.

2.2.1 Algebras of dimension ≤ 2

Let’s determine all Lie algebras (upto isomorphism) of dimension ≤ 2.

1. For dimension 1: If we have L = Fx then clearly [a, b] = 0∀a, b ∈ L.

2. For dimension 2: Suppose a basis of L is x, y. The commutator of any two vectors is just a
multiple of [x, y]. We just need to look at [xy] = αx+ βy, because [xx] = [yy] = 0.

We either have α = β = 0, in which case L is just abelian.
Otherwise, we define x′ = [xy] and let y′ ∈ L be independent of x′. This will give us [x′y′] =
λ [x, y] = λx′, λ 6= 0. Now take y′′ = λ−1y′ to finally get [x′y′′] = x′. So, upto isomorphism,
there is atmost one non-abelian L. We ensure that atleast one such exists:

Take F = R, L = R2, [u,v] =
(
det
[
u v

]) [1
0

]
. Indeed, letting x = e1, y = e2, we have

[x, y] =
(
det
[
e1 e2

])
e1 = e1 = x.

3 Subspaces and maps

Let L,L′ be F -Lie algebras with commutators [·, ·] , [·, ·]′.
ϕ : L→ L′ is said to be a homomorphism of Lie algebras if ϕ is a homomorphism of vector spaces
such that ϕ ([x, y]) = [ϕ(x), ϕ(y)]

′
.

Further if ϕ is an isomorphism of vector spaces, then ϕ is an isomorphism of Lie algebras.
A vector subspace K ⊆ L is said to be a subalgebra if x, y ∈ K =⇒ [x, y] ∈ K.

3.1 Derivations

Note that the Jacobi identity really gives [x [yz]] = [y [xz]] + [[xy] z]. For a ∈ L, write Da = [a, ·].
Just for this section let’s write ab instead of [ab].
The Jacobi identity gives us: Dx(yz) = y(Dxz) + (Dxy)z. This is just a derivation!

Definition 3.1 (F -algebra). An F -vector space V is said to be an F -algebra if it comes with a
bilinear operation V×V→ V. (We do not ask for associativity.)

Definition 3.2 (Derivation). A derivation δ of an F -algebra V is a linear map such that δ(ab) =
aδ(b) + δ(a)b.

The collection of all derivations of V is denoted by Der(V).
We get back to our notation [xy] and start hating xy.
Let V be an associative algebra over F . It is clearly seen that Der(V) is a subset of gl(V). Indeed,
it is something more (exercise!):
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1. If δ1, δ2 ∈ Der(V), then [δ1, δ2] ∈ Der(V). (Recall that the bracket in Der(V) is [x, y] =
xy − yx.)

2. If δ1, δ2 ∈ Der(V), a ∈ F , then δ1 + aδ2 ∈ Der(V).

Der(V) is a subalgebra of End(V).
However, (exercise!) the ordinary product of two derivations need not be a derivation.
For a Lie algebra L, we have already see that Dx ∈ Der(L)∀x ∈ L. In literature, Dx is usually
written as adx or adx and read as the adjoint of x. Since this derivation comes from inside the
algebra, we call all such adx’s as inner derivations. Others are called outer derivations.

Example (ad). Recall sl(2, F ). Take the ordered basis x =

[
0 1
0 0

]
, h =

[
1 0
0 −1

]
, y =

[
0 0
1 0

]
.

Check that [xy] = h, [hx] = 2x, [yh] = 2y. To determine, say, adx, it is enough to look at its action
on the basis and then use the coefficients to build up the vector w.r.t. the above basis.
For example adx(x) = (0, 0, 0), adx(h) = (−2, 0, 0), adx(y) = (0, 1, 0) in the matrix form. So this will

mean that adx =

0 −2 0
0 0 1
0 0 0

. After computing for y, h the final result is

adx =

0 −2 0
0 0 1
0 0 0

 adh =

2 0 0
0 0 0
0 0 −2

 ady =

 0 0 0
−1 0 0
0 2 0


3.2 Which subspaces allow quotienting?

A subspace I of a Lie algebra L over F is called an ideal of L if [xy] ∈ L∀x ∈ L, y ∈ I.

These are the subspaces of our interest which arise as kernels of hommoprhisms. We can note that
every ideal is a subalgebra, but not conversely.

Example. 0, L are ideals of L.

Example. The center Z(L) = {x ∈ L : [xz] = 0∀z ∈ L} = {x ∈ L : [xL] = 0}. Consider the map
ad : L → gl(L) given by x 7→ adx. The kernel of this map is precisely {x ∈ L : adx = 0} =
{x ∈ L : [xL] = 0} = Z(L).
This is very special, an example of a representation. We will call this the adjoint representation.

Example. The derived algebra [LL] =

{∑
i∈I

[xiyi] : I finite and xi, yi ∈ L∀i ∈ I
}

.

This can be realized as a special case of the fact that if I, J are ideals, so is [IJ ] (and I + J).

3.2.1 Adjoint representation

Lemma 3.3. ad : L→ gl(L) is a homomorphism of Lie algebras.

Proof. It’s not hard to see that ad is a vector space homomorphism.
Say x, y ∈ L. Then ad[xy](u) = [[xy]u] = − [u [xy]] = − [[ux] y] − [x [uy]] = [y [ux]] − [x [uy]] =
[x [yu]]− [y [xu]] = (adx ady − ady adx) (u) = [ad−x, ady] (u). So ad[xy] = [adx, ady]. �

Note that we can also treat (V =)L as a ‘linear space’ over (K =)L: The ‘scalar’ multiplication is
(for x ∈ K, v ∈ V ) x · v = [xv] = adx(v).

Definition 3.4 (Simple Lie algebras). A non-abelian Lie algebra L (i.e., [LL] 6= 0) is said to be
simple if it has no nontrivial proper ideals.
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3.3 Automorphisms

Let L be a Lie algebra L. An automorphism of L is an isomorphism L → L. The group of
automorphisms of L is denoted by Aut(L).

Definition 3.5 (Exponential map). Let δ ∈ Der(L) be nilpotent, i.e., δn = 0 for some n. We define

exp(δ) =

n−1∑
i=0

δi

i!

Claim 3.5.1. δ ∈ Der(L) and δk = 0 =⇒ exp(δ) ∈ Aut(L).

Proof. We can prove (exercise!) that δn

n! [x, y] =
n∑
i=0

[
δix
i! ,

δn−iy
(n−i)!

]
.

Using this, we can show (exercise!) that [exp δ(x), exp δ(y)] = exp δ [x, y]. Conclude exp δ ∈ End(L).

The inverse of exp δ is given by
k−1∑
j=0

(1− exp δ)j (check as an exercise!). �

4 Solvability and nilpotency of Lie algebras

4.1 Solvability

Let L be a Lie algebra. Define the derived series of L as follows:

D0(L) = L

Dn+1(L) = [Dn(L), Dn(L)]

We say L is solvable if Dk(L) = 0 for some k.

Example (Derived series). Consider L = t(n, F ), the Lie algebra of all (non-strict) upper triangular
matrices, with the commutator [AB] = AB − BA. It is not hard to see that the diagonal elements
of AB − BA are all 0 whenever A,B ∈ L. It follows that D1(L) = [L,L] = n(n, F ) the algebra of
strictly upper triangular matrices.
In fact, for a matrix A = (aij) ∈ L define min {j − i : aij 6= 0} to be the level of A. Denote the
set of all matrices of level l by tl(n, F ) and tk = 0∀k ≥ n. So t0 = t and t1 = n. Turns out that
Dl(t) = t2l−1 for l ≥ 1. Note that these are all ideals of t0.

Proposition 4.1. 1. All subalgebras and homomorphs of a solvable Lie algebra are solvable.

2. If I is a solvable ideal of a Lie algebra L such that L/I is solvable, then L is solvable.

3. Sum of solvable ideals of a Lie algebra is solvable.

Proof. 1. If L′ is a subalgebra of L then Di(L′) ⊆ Di(L).
If ϕ : L→ L′ is a surjective homomorphism, then ϕ(Di(L)) = Di(L′).

2. First note that Di(Dj(L)) = Di+j(L). Consider the natural projection π : L� L/I. Say k, l
are such that Dk(L/I) = 0, Dl(I) = 0. By the second statement in the proof of Item 1, we
have π(Dk(L)) = Dk(L/I) = 0 =⇒ Dk(L) ⊆ kerπ = I =⇒ Dk+l(L) ⊆ Dl(I) = 0.
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3. By an isomorphism theorem, (I + J)/J ∼= I/(I ∩ J). The RHS is the image of I under the
natural projection $ : I � I/(I∩J), and thus solvable by Item 1. Since J is solvable, conclude
by Item 2 that I + J is solvable.

�

Suppose S is a maximal solvable ideal of L, i.e., there is no solvable ideal properly containing S.
Let I ⊆ L be any solvable ideal. By the above proposition, S + I is solvable. Further, it contains S.
So S = S + I. It follows that I ⊆ S. This proves the following

Lemma 4.2. Every Lie algebra has a unique maximal solvable ideal.

The maximal solvable ideal of L is called the radical of L and denoted by RadL. L is said to be
semisimple if RadL = 0. Clearly, L is semisimple iff L has no nonzero solvable ideals.

Example. Say L is simple, i.e., L has exactly two ideals, namely, 0 and L. Now [L,L] = D1(L) is
an ideal of L, and nonzero (as L is non-abelian, by definition). This forces Dk(L) = L∀k. The only
solvable ideal of L is thus 0, which means L is semisimple.

Let’s look at a slightly different characterization.

Proposition 4.3. L is semisimple iff L has no nonzero abelian ideals.

Proof. Say L is semisimple. If I is an abelian ideal of L, then D1(I) = 0 whence I is solvable. It
follows that I = 0 ∵ I ⊆ RadL = 0.
Say L has no nonzero abelian ideals. For any solvable ideal I, there is no nonzero term in the derived
series, else the last nonzero term would be abelian. So I = 0. �

Finally, an easy but important property of semisimple Lie algebras is

4.2 Nilpotency

Let L be a Lie algebra. Define the central series of L as follows:

C0(L) = L

Cn+1(L) = [L,Cn(L)]

We say L is nilpotent if Ck(L) = 0 for some k.

Proposition 4.4. 1. All subalgebras and homomorphs of a nilpotent Lie algebra are nilpotent.

2. If L/Z(L) is nilpotent, then L is nilpotent.

3. If L 6= 0 is nilpotent, then Z(L) 6= 0

Proof. 1. Exactly as in solvability.

2. Consider the natural projection π : L � L/Z(L). Say k is such that Ck(L/Z(L)) = 0. Now
π(Ck(L)) = Ck(L/Z(L)) = 0 =⇒ Ck(L) ⊆ kerπ = Z(L) =⇒ Ck+1(L) ⊆ [L,Z(L)] = 0.

3. Let k be least such that Ck(L) = 0. L 6= 0 =⇒ k ≥ 1. Then Ck−1(L) 6= 0 and
[
Ck−1(L), L

]
=

0 =⇒ 0 6= Ck−1(L) ⊆ Z(L) =⇒ Z(L) 6= 0.
�
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It might be worthy to note that nilpotency implies solvability. We finally look at an example which
is solvable but not nilpotent.

Example. Recall the two dimensional nonabelian Lie algebra: L = Fx+Fy with [x, y] = x. Then
C1 = D1 = [L,L] = 〈[x, y]〉 = Fx. However, D2 =

[
D1, D1

]
= 0 ∵ 1-dimensional algebras are

abelian and it follows that L is solvable. But C2 =
[
L,C1

]
= Fx. Consequently Ck = Fx∀k ≥ 0

whence L is not nilpotent.

Nilpotency is defined by looking at the central series. At an elemental level, we are really looking
at terms [x, y] = adx(y) where x ∈ L, y ∈ Ck(L). If L is nilpotent, we can conclude that there is
some n for which adxn

· · · adx1
(y) = 0∀x1, · · · , xn, y ∈ L. In particular, (adx)

n
= 0∀x ∈ L. In other

words,

Lemma 4.5. If L is nilpotent, then all elements of L are ad-nilpotent.

It turns out that the converse of the above lemma is also true and we call it Engel’s theorem:

Theorem 4.6 (Engel). If all elements of L are ad-nilpotent, then L is nilpotent.

Before proceeding with the proof (which is very very involved), we state (and not prove) an inter-
mediate theorem, using which we will prove Theorem 4.6.

Theorem 4.7. Let V 6= 0 be a finite dimensional vector space and L ⊆ gl(V ) be a Lie subalgebra
consisting of only nilpotent elements. Then there is a common eigenvector for all elements of L. In
other words, ∃~v ∈ V,~v 6= 0 such that L~v = 0.

Proof of Engel’s theorem. Let L be a Lie algebra in which all elements are ad-nilpotent. So all
elements of ad(L) = {adx : x ∈ L} ⊆ gl(L) are nilpotent, by definition. It follows (by the above
theorem) that ∃~v ∈ L r {0} such that adx(~v) = 0∀x ∈ L, i.e., [~v, L] = 0. So ~v ∈ Z(L). Note
that L′ = L/Z(L) is a Lie algebra of smaller dimension (∵ Z(L) 6= 0) and all elements of L′ are
ad-nilpotent. By induction, that L′ is nilpotent, whence by an earlier proposition, L is nilpotent. �

4.3 A theorem of Lie

From here, we will assume F = F .
Following up on Theorem 4.7, we have a similar theorem for solvable (instead of ‘nilpotent’) algebras,
which we again state without proof.

Theorem 4.8. Let L be a solvable Lie subalgebra of gl(V ) with V 6= 0 finite dimensional vector
space. V contains a common eigenvector for all endomorphisms in L. In other words, there is a
~v ∈ Lr {0} and a functional λ : L→ F such that x~v = λ(x)~v∀x ∈ L.

Theorem 4.9 (Lie’ theorem). Let V 6= 0 be a finite dimensional vector space. Let L be a solvable
Lie subalgebra of gl(V ). Then ∃ a flag 0 = V0 ⊆ V1 ⊂ · · · ⊂ Vn = V (i.e., dimVi = i) and is stable
under L (i.e., [L, Vi] ⊆ Vi∀i).
(In other words, the matrices of L relative to a suitable basis of V are all upper triangular).

Proof. Let ~v be an eigenvector as stated in the previous theorem and let V1 = F~v. Consider

Ṽ = V/V1. This forces us to consider the homomorphism ϕ̃ : L → gl
(
Ṽ
)

given by ϕ̃(x) =

(~u+ V1 7→ x~u+ V1). By induction, there is a flag 0 = V1/V1 ⊂ V2/V1 ⊂ · · · ⊂ Vn/V1 stable under
ϕ̃(L), for some subspaces V2 ⊂ · · · ⊂ Vn, and dim (Vi/V1) = i− 1. So we have found V2 ⊂ · · · ⊂ Vn
(take any lift) with dimensions 2, · · · , n respectively, which are stable under L. �
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4.4 A theorem of Cartan

In a similar style, we state an intermediate theorem which will be useful in proving a theoreym due
to Cartan, which gives a criterion for solvability.

Theorem 4.10. Let A ⊆ B ⊆ gl(V ) with V being a finite dimensional vector space. Consider
M = {x ∈ gl(V ) : [x,B] ⊆ A}. Suppose x ∈M satisfies Tr(xy) = 0∀y ∈M . Then x is nilpotent.

Theorem 4.11 (Cartan’s criterion). Let L be a subalgebra of gl(V ), with V being a finite dimen-
sional vector space. If Tr(xy) = 0∀x ∈ [LL] , y ∈ L then L is solvable.

Proof. Use Theorem 4.10 with A = [LL] , B = L, V as given, along with the following associativity:
Tr([xy] z) = Tr(x [yz]) if x, y, z are endomorphisms of some finite dimensional vector space. �

5 Representations

Definition 5.1 (Representation). Let L be a Lie algebra over field F . A representation of L is
a homomorphism ρ : L→ gl(V ) along with some vector space V/F .

Definition 5.2 (Module). Let L be a Lie algebra over field F . An L-module is a vector space
V endowed with an operation L × V → V (denoted (x, ~v) 7→ x~v) such that the following hold
∀a, b ∈ F,x,y ∈ L, ~u,~v ∈ V :

1. (ax+ by)v = a(x~v) + b(y~v)

2. x(a~u+ b~v) = a(x~u) + b(x~v)

3. [xy]~v = x (y~v)− y (x~v)

These are exactly the same:

• For a representation ρ : L→ gl(V ), V is an L-module via the action x~v = ρ(x)~v.

• If V is an L-module (action (x, ~v) 7→ x~v), then ρ : L → gl(V ) is a representation by defining
ρ(x) = (~v 7→ x~v).

Definition 5.3 (Irreducible representation). An L-module V is said to be irreducible iff V has
precisely two L-submodules, namely 0 and V .

The complete opposite of the above concept is:

Definition 5.4 (Completely reducible representation). An L-module V is said to be completely
reducible iff every L-submodule W of V has a complement W ′ which is also an L-submodule of V .

An equivalent characterization is

Proposition 5.5. An L-module V is said to be completely reducible iff V can be written as a
sum of irreducible L-submodules.

Theorem 5.6 (Schur’s lemma). Let V,W be irreducible representations of a Lie algebra L, every-
thing over field F . Let ψ : V →W be a homomorphism of L-modules. Then we have

1. (F may not be algebraically closed) ψ = 0 or ψ is an isomorphism.

2.
(
F = F

)
For V = W , we have ψ = λ · I for some λ ∈ F .

11



Proof. 1. kerψ is an L-submodule. So kerψ = 0 or kerψ = V .
kerψ = 0 =⇒ ψ(V ) ∼= V . ψ(V ) is a L-submodule of W . It follows that by irreducibility of
W that W ∼= ψ(V ) ∼= V .
kerψ 6= 0 =⇒ kerψ = V =⇒ ψ = 0.

2. ψ ∈ End(V ). Let λ ∈ F = F be an eigenvalue of ψ. So ker (ψ − λ · I) 6= 0 =⇒ ψ = λ · I
�

Corollary 5.7. Let ϕ : L→ gl(V ) be irreducible. If ψ ∈ gl(V ) is such that [ψ,ϕx] = 0∀x ∈ L then
ψ is a scalar.

Proof. Write ϕx(~v) as x·~v. [ψ,ϕx] = 0 simply means that ψ (x · ~v) = x·ψ (~v), that is, ψ ∈ EndL(V ).
Conclude by Theorem 5.6. �

Consider a symmetric bilinear form β : L× L→ F .
Its radical is defined to be S = {x ∈ L : β(x, y) = 0∀L} = {x ∈ L : β(x, L) = 0}. If the radical is 0
we say β is nondegenerate.
A different way to see nondegeneracy is as follows. Fix a basis B = (e1, · · · , en) of L. β is nonde-
generate iff the matrix M = [β(ei, ej)]ij is nonsingular.

This can be seen as follows: S 6= 0 ⇐⇒ β(x, L) = 0 for some x 6= 0 ⇐⇒ ∃x ∈ Lr {0} such that
β(ei, x) = 0∀i ⇐⇒ M [x]B = 0 for some x 6= 0 ⇐⇒ detM = 0.
Here is an interesting corollary to Theorem 5.6.

Corollary 5.8.
(
F = F

)
Any two nondegenerate symmetric bilinear forms on a simple Lie algebra

L are proportional.

Proof. Let β, γ be two such bilinear forms.
Define ϕ : L → L∗ by ϕ(x) = βx = β(x, ·). ϕx is an L-module homomorphism ∀x. Now, ∀f ∈
L∗∃ xf ∈ L such that f = γ(xf , ·) ∵ γ is nondegenerate. Let σ : L∗ → L be the map f 7→ xf . This
is again a homomorphism.
One can show that (exercise!) (σ◦ϕ)◦adx(v) = adx(σ◦ϕ)(v)∀x, v ∈ L. In other words, σ◦ϕ ∈ gl(L)
commutes with every adx. Note that ad : L → gl(L) is an irreducible representation due to the
simplicity of L. By Corollary 5.7, σ ◦ ϕ = λ · Id for some λ ∈ F . But this just means that
β(x, y) = βx(y) = γ(σ(βx), y) = γ(σ(ϕ(x)), y) = γ(λx, y) = λ · γ(x, y). �

5.1 Casimir element of a representation and its decomposition

Let L be a semisimple Lie algebra along with a monomorphism ϕ : L → gl(V ), for some finite
dimensional vector space V , denoted by x 7→ ϕx. In our language, such a monomorphism will
also be called a faithful representation. Consider the bilinear map β : L × L → F defined by
β(x, y) = Tr(ϕxϕy). It is not hard to see that β is a symmetric bilinear form. Further, β is
associative in the following sense: β([x, y] , z) = β(x, [y, z]).
Due to the faithfulness of the representation, β, in this case, turns out to be nondegenerate (hint:
Cartan’s criterion for solvability).

Example (A special case: ϕ = ad). The β defined above (for any Lie algebra, not necessarily
semisimple) corresponding to the adjoint representation is known as the killing form and denoted
by κ. It turns out, due to a (different) criterion of Cartan that a Lie algebra is semisimple iff it’s
killing form is nondegenerate. On some thought (I found this by pure experimentation), it turns
out that the killing form of sl(n, F ) looks like (here, the choice of basis is: e11− e22, · · · , en−1,n−1−
enn, e12, e13, · · · , e1n, e21, · · · , e2n, · · · , en−1,n):
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We can compute the determinant of this as follows. The final answer would be the product of the
determinant of the two blocks. The upper block has determinant nn

2 × 2n
2−1 (take 2n common and

solve a recurrence). The bottom block is a (symmetric) permutation matrix of size n2−n, so it is a

product of n2−n
2 =

(
n
2

)
transpositions. The overall determinant turns out to be (−1)(

n
2)nn

2 × 2n
2−1.

In other words, this is

{
nn

2 × 2n
2−1 if n ≡ 0, 1 (mod 4)

−nn2 × 2n
2−1 otherwise

.

Back to our discussion. Let γ be any nondegenerate symmetric associative bilinear form on L.
Consider the fixed basis B = (ei)

n
i=1 of L. And let f1, · · · , fn be a basis dual to B with respect

to γ (this makes sense because γ is nondegenerate). For any representation ρ : L → gl(V ) define
cρ(γ) =

∑
i ρ(ei)ρ(fi).

Definition 5.9. For a faithful representation ϕ : L → gl(V ) denoted by x 7→ ϕx, with trace
form β(x, y) = Tr(ϕxϕy), the map cϕ(β) defined above is called the Casimir element of the
representation ϕ with respect to the chosen bases. Since the information of β is encoded in ϕ, we
simply call this cϕ.

Claim 5.9.1. For x ∈ L define aij , bij to be such that [x, ei] =
∑
j aijej and [x, fi] =

∑
j bijfj .

Then aij + bji = 0∀1 ≤ i, j ≤ n.

Proof. Exercise. �

With this claim, we can easily see that for any representation ρ and nondegenerate symmetric
bilinear form γ, [cρ(γ), ρ(x)] = 0∀x ∈ L. Further, if V is irreducible, then cρ = n

k Ik, where
k = dimV, n = dimL. This can be seen by Schur’s lemma. It follows that such cρ is independent of
the chosen basis.

Remark 5.10. It turns out that L = [LL] for semisimple Lie algebras L. The proof of this
statement requires some more machinery to be built up. Intuitively, ‘semisimple’ means something
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which is built out of ‘simple’ stuff. It is indeed true that every semisimple Lie algebra can be written
as the direct sum of simple ideals of L. Further this decomposition is unique. Since L = [LL]
holds for simple Lie algebras, it will hold for their direct sum too, because, the ‘components’ are
independent in some sense.

Now notice that for any representation ϕ : L → gl(V ), we have ϕx = ϕ[yz] for some y, z ∈ L
due to Remark 5.10. This just means that ϕx = [ϕy, ϕz] ∈ sl(V ) = [gl(V ), gl(V )]. Further we
recall that a representation is said to be completely reducible if it can be written as a sum of
irreducible representations. We end by stating important theorem, without proof, in light of the
above discussion:

Theorem 5.11 (Weyl). Let ϕ : L → gl(V ) be a finite dimensional representation of a semisimple
Lie algebra L. Then ϕ is completely reducible.
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