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Lie algebras Representations

Recap

If L is a Lie algebra over F then adx = (y 7→ [xy]) ∈ End(L). In fact, it is a
derivation: adx [ab] = [a (adx b)] + [(adx a) b].

The set of all derivations on L is denoted by Der(L). It turns out to be a
subalgebra of End(L).

The map ad : L→ ad(L) given by x 7→ adx is a homomoprhism of Lie algebras:
ad[xy] = [adx, ady ]. This is called the adjoint representation of L.

A subspace I of a Lie algebra L over F is called an ideal of L if
[xy] ∈ L∀x ∈ L, y ∈ I.

A non-abelian Lie algebra L (i.e., [LL] 6= 0) is said to be simple if it has no
nontrivial proper ideals.

sl(2). Ordered basis x =

0 1

0 0

 , h =

1 0

0 −1

 , y =

0 0

1 0

 .
adx =


0 −2 0

0 0 1

0 0 0

 , adh =


2 0 0

0 0 0

0 0 −2

 , ady =


0 0 0

−1 0 0

0 2 0


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Automorphisms

An automorphism of L is an isomorphism L → L of Lie algebras. The group of auto-
morphisms of L is denoted by Aut(L).

Definition (Exponential map)

Let δ ∈ Der(L) be nilpotent, i.e., δn = 0 for some n. We define

exp(δ) =

n−1∑
i=0

δi

i!

Claim: δ ∈ Der(L) and δk = 0 =⇒ exp(δ) ∈ Aut(L).

Verify that δ
n

n!
[x, y] =

n∑
i=0

[
δix
i!
, δ

n−iy
(n−i)!

]
. Using this Leibniz rule, one can show that

[exp δ(x), exp δ(y)] = exp δ [x, y]. So exp δ ∈ End(L).

The inverse of exp δ is given by
k−1∑
j=0

(1− exp δ)j (Check!).
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Solvability

Definition (Derived series and solvability)

Let L be a Lie algebra. Define the derived series of L as follows:

D0(L) = L

Dn+1(L) = [Dn(L), Dn(L)]

We say L is solvable if Dk(L) = 0 for some k.

Example (Derived series)

Consider L = t(n, F ), the Lie algebra of all (non-strict) upper triangular matrices, with
the commutator [AB] = AB −BA. It is not hard to see that the diagonal elements of
AB −BA are all 0 whenever A,B ∈ L. It follows that D1(L) = [L,L] = n(n, F ) the
algebra of strictly upper triangular matrices.
In fact, for a matrix A = (aij) ∈ L define min {j − i : aij 6= 0} to be the level of A.
Denote the set of all matrices of level l by tl(n, F ) and tk = 0∀k ≥ n. So t0 = t and
t1 = n. Turns out that Dl(t) = t2l−1 for l ≥ 1. Note that these are all ideals of t0.

Remark: Dk(L) are ideals of L, in general.
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Solvability: properties

Proposition

1 All subalgebras and homomorphs of a solvable Lie algebra are solvable.

2 If I is a solvable ideal of a Lie algebra L such that L/I is solvable, then L is
solvable.

3 Sum of solvable ideals of a Lie algebra is solvable.

Proof.

1 If L′ is a subalgebra of L then Di(L′) ⊆ Di(L).
If ϕ : L→ L′ is a surjective homomorphism, then ϕ(Di(L)) = Di(L′).

2 First note that Di(Dj(L)) = Di+j(L). Consider the natural projection
π : L� L/I. Say k, l are such that Dk(L/I) = 0, Dl(I) = 0. By the second
statement in the proof of 1, we have π

(
Dk(L)

)
= Dk(L/I) = 0 =⇒ Dk(L) ⊆

kerπ = I =⇒ Dk+l(L) ⊆ Dl(I) = 0.

3 By an isomorphism theorem, (I + J)/J ∼= I/(I ∩ J). The RHS is the image of I
under the natural projection $ : I � I/(I ∩ J), and thus solvable by 1. Since J is
solvable, conclude by 2 that I + J is solvable.

�
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Semisimplicity

Let L be a Lie algebra. Suppose S is a maximal solvable ideal of L, i.e., if T is a solvable
ideal containing S, then S = T . Let I ⊆ L be any solvable ideal. It follows that S + I
is solvable. Further, it contains S. So S = S + I. It follows that I ⊆ S. This proves the
following

Lemma
Every Lie algebra has a unique maximal solvable ideal.

The maximal solvable ideal of L is called the radical of L and denoted by RadL. L is
said to be semisimple if RadL = 0.

Example

Say L is simple, i.e., L has exactly two ideals, namely, 0 and L. Now [L,L] = D1(L) is
an ideal of L , and nonzero (as L is non-abelian, by definition). This forces
Dk(L) = L∀k. The only solvable ideal of L is thus 0, which means L is semisimple.
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A different characterization

A clear characterization
L is semisimple iff L has no nonzero solvable ideals.

Another characterization
L is semisimple iff L has no nonzero abelian ideals.

Proof.
Say L is semisimple. If I is an abelian ideal of L, then D1(I) = 0 whence I is solvable.
It follows that I = 0 ∵ I ⊆ RadL = 0.
Say L has no nonzero abelian ideals. For any solvable ideal I, there is no nonzero
term in the derived series, else the last nonzero term would be abelian. So I = 0. �
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Nilpotency

Definition (Central series and nilpotency)

Let L be a Lie algebra. Define the central series of L as follows:

C0(L) = L

Cn+1(L) = [L,Cn(L)]

We say L is nilpotent if Ck(L) = 0 for some k.
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Nilpotency: properties

Proposition

1 All subalgebras and homomorphs of a nilpotent Lie algebra are nilpotent.

2 If L/Z(L) is nilpotent, then L is nilpotent.

3 If L 6= 0 is nilpotent, then Z(L) 6= 0

Proof.

1 Exactly as in solvability.

2 Consider the natural projection π : L� L/I where I = Z(L). Say k is such that
Ck(L/Z(L)) = 0. Now π(Ck(L)) = Ck(L/Z(L)) = 0 =⇒ Ck(L) ⊆ kerπ =
Z(L) =⇒ Ck+1(L) ⊆ [L,Z(L)] = 0.

3 Let k be least such that Ck(L) = 0. L 6= 0 =⇒ k ≥ 1. Then Ck−1(L) 6= 0 and[
Ck−1(L), L

]
= 0 =⇒ 0 6= Ck−1(L) ⊆ Z(L) =⇒ Z(L) 6= 0.

�
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Engel’s theorem

Nilpotency is defined by looking at the central series. At an elemental level, we are
really looking at terms [x, y] = adx(y) where x ∈ L, y ∈ Ck(L). If L is nilpotent, we
can conclude that there is some n for which adxn · · · adx1 (y) = 0∀x1, · · · , xn, y ∈ L.
In particular, (adx)n = 0∀x ∈ L. In other words,

Lemma
If L is nilpotent, then all elements of L are ad-nilpotent.

It turns out that the converse of the above lemma is also true and we call it Engel’s
theorem:

Theorem (Engel)

If all elements of L are ad-nilpotent, then L is nilpotent.
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An intermediate theorem

Theorem
Let V 6= 0 be a finite dimensional vector space and L ⊆ gl(V ) be a Lie subalgebra
consisting of only nilpotent elements. Then there is a common eigenvector for all
elements of L. In other words, ∃~v ∈ V,~v 6= 0 such that L~v = 0.

Proof of Engel’s theorem.

Let L be a Lie algebra in which all elements are ad-nilpotent. So all elements of
ad(L) = {adx : x ∈ L} ⊆ gl(L) are nilpotent, by definition. It follows (by the above
theorem) that ∃v ∈ L r {0} such that adx(v) = 0∀x ∈ L, i.e., [v, L] = 0. So v ∈ Z(L).
Note that L′ = L/Z(L) is a Lie algebra of smaller dimension (∵ Z(L) 6= 0) and all
elements of L′ are ad-nilpotent. By induction, that L′ is nilpotent, whence by an earlier
proposition, L is nilpotent. �
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A followup

Theorem(
F = F

)
Let L be a solvable Lie subalgebra of gl(V ) with V 6= 0 finite dimensional

vector space. V contains a common eigenvector for all endomorphisms in L. In other
words, there is a v ∈ Lr {0} and a functional λ : L→ F such that xv = λ(x)v∀x ∈ L.

Theorem (Lie’ theorem)(
F = F

)
Let V 6= 0 be a finite dimensional vector space. Let L be a solvable Lie

subalgebra of gl(V ). Then ∃ a flag 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V (i.e., dimVi = i) and
is stable under L (i.e., [L, Vi] ⊆ Vi∀i).
(In other words, the matrices of L relative to a suitable basis of V are all upper
triangular).

Proof.
Let v be an eigenvector as stated in the previous theorem and let V1 = Fv. Then
induct by looking at V/V1. Details in writeup. �
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Cartan’s criterion

Theorem
Let A ⊆ B ⊆ gl(V ) with V being a finite dimensional vector space. Consider
M = {x ∈ gl(V ) : [x,B] ⊆ A}. Suppose x ∈M satisfies Tr(xy) = 0∀y ∈M . Then x
is nilpotent.

Theorem (Cartan’s criterion)

Let L be a subalgebra of gl(V ), with V being a finite dimensional vector space. If
Tr(xy) = 0∀x ∈ [LL] , y ∈ L then L is solvable.

Proof.
Use the previous theorem with A = [LL] , B = L, V as given, along with the following
associativity: Tr([xy] z) = Tr(x [yz]) if x, y, z are endomorphisms of some finite
dimensional vector space. �
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Representations
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Recap

Let L be a Lie algebra over field F . A representation of L is a homomorphism
ρ : L→ gl(V ) along with some vector space V/F .
Let L be a Lie algebra over field F . An L-module is a vector space V endowed
with an operation L× V → V (denoted (x, ~v) 7→ x~v) such that the following hold
∀a, b ∈ F,x,y ∈ L, ~u,~v ∈ V :

1 (ax + by)v = a(x~v) + b(y~v)
2 x(a~u+ b~v) = a(x~u) + b(x~v)
3 [xy]~v = x (y~v)− y (x~v)

For a representation ρ : L→ gl(V ), V is an L-module via the action x~v = ρ(x)~v.
If V is an L-module (action (x, ~v) 7→ x~v), then ρ : L→ gl(V ) is a representation by
defining ρ(x) = (~v 7→ x~v).

An L-module V is said to be irreducible iff V has precisely two L-submodules,
namely 0 and V .
(Schur’s lemma) Let V,W be irreducible representations of a Lie algebra L,
everything over field F . Let ψ : V →W be a homomorphism of L-modules. Then
we have

1 ψ = 0 or ψ is an isomorphism.
2

(
F = F

)
For V = W , we have ψ = λ · I for some λ ∈ F .

(New today) A corollary: Let ϕ : L→ gl(V ) be irreducible. If ψ ∈ gl(V ) is such
that [ψ,ϕx] = 0∀x ∈ L then ψ is a scalar.
Proof: Write ϕx(~v) as x · ~v. [ψ,ϕx] = 0 simply means that ψ ∈ EndL(V ).
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Symmetric bilinear forms

Consider a symmetric bilinear form β : L× L→ F .
Its radical is defined to be S = {x ∈ L : β(x, y) = 0∀L} = {x ∈ L : β(x, L) = 0}. If
the radical is 0 we say β is nondegenerate.

A different way to see nondegeneracy is as follows. Fix a basis B = (e1, · · · , en) of L.
β is nondegenerate iff the matrix M = [β(ei, ej)]ij is nonsingular.
This can be seen as follows: S 6= 0 ⇐⇒ β(x, L) = 0 for some x 6= 0 ⇐⇒ ∃x ∈
L r {0} such that β(ei, x) = 0∀i ⇐⇒ M [x]B = 0 for some x 6= 0 ⇐⇒ detM = 0.
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Trace form

Let L be a semisimple Lie algebra along with a faithful (1 − 1) representation ϕ : L →
gl(V ), for some finite dimensional vector space V , denoted by x 7→ ϕx.
We say that the traceform of a representation is the bilinear map β : L × L → F given
by (x, y) 7→ Tr(ϕxϕy).
One can check that this is associative, in the following sense: β([x, y] , z) = β(x, [y, z]).
Further, faithfulness of the representation implies the nondegeneracy of β.
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Example: ad representation

Let’s look at the special case when ϕ = ad. In this case, the trace form is called the
killing form and usually denoted by κ. It is a result due to Cartan that L is semisimple
iff κ is nondegenrate.

As a further special example, take L = sl(n, F ). Choose an ordered basis x1, x2 · · ·
as e11 − e22, · · · , en−1,n−1 − enn, e12, e13, · · · , e1n, e21, · · · , e2n, · · · , en−1,n). The
matrix of κ(xi, xj) looks as below. The modulus of the determinant is nn

2 × 2n
2−1.
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Casimir element of a representation
(
F = F

)
Let γ be any nondegenerate symmetric associative bilinear form on L. Consider the
fixed basis B = (ei)

n
i=1 of L. And let f1, · · · , fn be a basis dual to B with respect to γ

(this makes sense because γ is nondegenerate). For any representation ρ : L→ gl(V )
define cρ(γ) =

∑
i ρ(ei)ρ(fi).

Definition
For a faithful representation ϕ : L→ gl(V ) denoted by x 7→ ϕx, with trace form
β(x, y) = Tr(ϕxϕy), the map cϕ(β) defined above is called the Casimir element of
the representation ϕ with respect to the chosen bases. Since the information of β is
encoded in ϕ, we simply call this cϕ.

Turns out that this is has a very beautiful structure for irreducible representations.

Lemma
For x ∈ L define aij , bij to be such that [x, ei] =

∑
j aijej and [x, fi] =

∑
j bijfj .

Then aij + bji = 0∀1 ≤ i, j ≤ n.

If V is irreducible, then cρ = n
k
Ik, where k = dimV, n = dimL. This can be seen by

Schur’s lemma (in combination with the above lemma). Such cρ is independent of the
chosen basis.
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Finally

We end by stating an important theorem, without proof, in light of the above discussion:

Theorem (Weyl)

Let ϕ : L→ gl(V ) be a finite dimensional representation of a semisimple Lie algebra
L. Then ϕ is completely reducible.

0Look at the writeup for more details on some machinery required for proving this theorem.
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