Introduction to Lie algebras

Nilava Metya

Chennai Mathematical Institute

August 1, 2021

We all know $M_n(\mathbb{R})$ and have seen this in many different ways.

- Vector space: we can add matrices and multiply by complex scalars.
- 2 Ring: we can multiply square matrices.
- Second ty: You can think it as literally \mathbb{R}^{n^2} , just with the linear 'look' of \mathbb{R}^{n^2} being changed to a tabular form. It's possible to measure distances. Some examples:

$$\|M\| = \sum_{1 \le i, j \le n} |M_{ij}|$$
$$\|M\|_{p,q} = \left\{ \sum_{j=1}^{n} \left\{ \sum_{i=n}^{n} |M_{ij}|^p \right\}^{\frac{q}{p}} \right\}^{\frac{1}{q}}$$

4 Manifold: umm...

A place where you can do calculus

Think of placing 'charts' on a surface, so that there is no roughness or fold-lines on the chart - in other words, we should be able to pick up a small region on the surface and **smoothly** deform it into \mathbb{R}^2 in a one-one way. And these charts are 'stitched' smoothly.

Well, for a manifold, you would allow this to happen for \mathbb{R}^n for any $n \ge 1$, not just \mathbb{R}^2 . Since we know how to do calculus on \mathbb{R}^n , and we can easily (and smoothly) transition between charts and \mathbb{R}^n , we know how to do calculus in any manifold.

Definition (Submanifolds of \mathbb{R}^n)

A subset $M \subseteq \mathbb{R}^n$ is said to be an *m*-dimensional submanifold of \mathbb{R}^n if $\forall x \in M, \exists W \underset{\text{open}}{\subset} \mathbb{R}^n$ containing x such that $W \cap M$ is diffeomorphic to some $U \underset{\text{open}}{\subset} \mathbb{R}^m$.

The diffeomorphism $\psi: U \to W \cap M$ is called a *parameterization*.

Lemma

An open subset of a manifold is itself a manifold.

Proof.

Let $M' \underset{\text{open}}{\subset} M$. Fix $x \in M' \subseteq M$. Denote the previous diffeomorphism by $\varphi_x : W_x \cap M \to U_x$. Then the restriction of φ_x to M' does the job.

A beautiful way to build manifolds is to look at graphs of functions...

Theorem (Implicit function theorem)

Let $m < n, \Omega \subset_{\text{open}} \mathbb{R}^n, \varphi \in \mathcal{C}^1(\Omega, \mathbb{R}^m)$. Let $M_c = \varphi^{-1}(c)$ be non-empty such that $\mathcal{J}\varphi(x)$ has full rank (namely, m) $\forall x \in M_c$. Then M_c is an (n-m)-dimensional submanifold of \mathbb{R}^n .

Let $m < n, \varphi \in \mathcal{C}^1 (\Omega \subseteq \mathbb{R}^n, \mathbb{R}^m)$. Let $M_c = \varphi^{-1}(c)$ be non-empty such that $\mathcal{J}\varphi(\boldsymbol{x})$ has full rank (namely, m) $\forall \boldsymbol{x} \in M_c$. Then M_c is an (n - m)-dimensional submanifold of \mathbb{R}^n .

$$\begin{split} \varphi \in \mathcal{C}^1(\mathbb{R}^2,\mathbb{R}). \text{ So } n=2, m=1 \text{ here. } M_0=\{(x,e^x): x\in \mathbb{R}\}.\\ \mathcal{J}\varphi(x,y)=\begin{bmatrix} -e^x & 1 \end{bmatrix}. \text{ This has rank 1 always. The graph of this function is a manifold of dimension } n-m=1. \end{split}$$

Let $m < n, \varphi \in \mathcal{C}^1 (\Omega \subseteq \mathbb{R}^n, \mathbb{R}^m)$. Let $M_c = \varphi^{-1}(c)$ be non-empty such that $\mathcal{J}\varphi(\boldsymbol{x})$ has full rank (namely, m) $\forall \boldsymbol{x} \in M_c$. Then M_c is an (n - m)-dimensional submanifold of \mathbb{R}^n .

$$\begin{split} \varphi \in \mathcal{C}^1(\mathbb{R}^3,\mathbb{R}). \text{ So } n &= 3, m = 1 \text{ here. } M_1 = \big\{(x,y,z): x^2 + y^2 + z^2 = 1\big\}.\\ \mathcal{J}\varphi(x,y,z) &= \begin{bmatrix} 2x & 2y & 2z \end{bmatrix}. \text{ This has rank } 1 \text{ always. The graph of this function is a manifold of dimension } n - m = 2. We popularly know this as the 2-sphere or S². \end{split}$$

Let $m < n, \varphi \in \mathcal{C}^1 (\Omega \subseteq \mathbb{R}^n, \mathbb{R}^m)$. Let $M_c = \varphi^{-1}(c)$ be non-empty such that $\mathcal{J}\varphi(\boldsymbol{x})$ has full rank (namely, m) $\forall \boldsymbol{x} \in M_c$. Then M_c is an (n - m)-dimensional submanifold of \mathbb{R}^n .

 $\varphi \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^0)$. So m = 0 here. $M_0 = \{ \boldsymbol{x} \in \mathbb{R}^n : \varphi(\boldsymbol{x}) = 0 \} = \mathbb{R}^n$. $\mathcal{J}\varphi(x, y, z) = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$. This has rank 0 (full!) always. The graph of this function is a manifold of dimension n - m = n.

Let F be a field.

Lie Group	Function	Set
$M_n(\mathbb{R})$	-	-
$GL_n(\mathbb{R})$	det	$\det^{-1}(\mathbb{R}\smallsetminus\{0\})$
$SL_n(\mathbb{R})$	det	$det^{-1}(1)$
Strictly upper Δ matrices	Projection π onto lower	$\pi^{-1}(0)$
	Δ matrices	
$O_n(\mathbb{R})$	$\varphi = \pi \circ (A \mapsto A^t A)$	$\varphi^{-1}(I)^1$

$$\label{eq:approx_state} \begin{array}{l} {}^1(A\mapsto A^tA){}^{-1}(I)=\varphi^{-1}(I):A\in\varphi^{-1}(I)\implies e_i^tA^tAe_j=e_j^tA^tAe_i=0. \ A^tA \ \text{triangular} \\ \Longrightarrow \ A^tA \ \text{diagonal.} \end{array}$$

How to compute tangents?

Let's consider $\varphi(x, y, t) = (x - y, y - t^2)$ along with the level set $M_{(1,0)} = \{(x, y, t) : x - y = 1, y = t^2\} = \{(1 + t^2, t^2, t) : t \in \mathbb{R}\}$. Call this curve γ . We all know how to compute the tangent at, say, p = (2, 1, -1).

We first 'solve' for m = 2 coordinates in terms of the other 'free' n - m = 1 coordinates: $x = 1 + t^2$, $y = t^2$. Then $\dot{x} = 2t$, $\dot{y} = 2t$, $\dot{t} = 1$ so that the required direction of the 'velocity' at the point (2, 1, -1) is just v = (-2, -2, 1). But we want the line to be passing through p. So we say that out line is just given by $\{p + vs : s \in \mathbb{R}\}$. One thing to note is that $\gamma(-1 + s) = \gamma(-1) + \dot{\gamma}(-1)s + \cdots$.

Definition (Derivative)

Let $f: \Omega \subset_{\text{open}} \mathbb{R}^m \to \mathbb{R}^n$ be a function and $p \in \Omega$. We say f is differentiable at p if there is a linear map $T: \mathbb{R}^m \to \mathbb{R}^n$ satisfying

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|\boldsymbol{f}(\boldsymbol{p}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{p})-T\boldsymbol{h}\|}{\|\boldsymbol{h}\|}=0$$

We say T = Df(p) = f'(p)

Smooth maps bring up the question of derivatives. We define directional derivatives as

$$D_{\boldsymbol{v}}(\boldsymbol{f})(\boldsymbol{p}) = \lim_{t \to 0} \frac{\boldsymbol{f}(\boldsymbol{p} + t\boldsymbol{v}) - \boldsymbol{f}(\boldsymbol{v})}{t}$$

It turns out that for sufficiently 'nice' functions, $D_{\boldsymbol{v}}(\boldsymbol{f})(\boldsymbol{p}) = \langle \boldsymbol{v}, \boldsymbol{f}'(\boldsymbol{p}) \rangle.$

Consider the map det : $M_n(\mathbb{R}) \to \mathbb{R}$ given by $A \mapsto \det A$. It can be proven that this is a 'smooth' map.

Smooth maps. Hmm... Derivatives!

Exercise

Show that $D_H \det(A) = \operatorname{Tr}(\operatorname{adj}(A) \cdot H)$

Turns out that the above fact can be used to prove that the 'tangent space' of $SL_n(\mathbb{R})$ at $I \in SL_n(\mathbb{R})$ is just $\{M \in M_n(\mathbb{R}) : \operatorname{Tr}(M) = 0\}$. We call this $\mathfrak{sl}_n(\mathbb{R})$.

Recall the multiplication rule for derivatives: D(uv) = (Du)v + u(Dv). We also know that the derivative is a linear. We shall try to generalize this notion.

Let $p \in \mathbb{R}^n$. Consider the set of all pairs (U, f) where $U \subseteq \mathbb{R}^n$ is an open neighbourhood of p, and $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$. We define an equivalence relation $\stackrel{p}{\sim}$ by: $(U, f) \stackrel{p}{\sim} (V, g) \iff \exists W \underset{\text{open}}{\subseteq} U \cap V, a \in W$ such that $f|_W = g|_W$. If $h \in C^{\infty}(A, \mathbb{R})$ with $a \in A \underset{\text{open}}{\subseteq} \mathbb{R}^n$ then the germ of h is the equivalence class of h under $\stackrel{a}{\sim}$. The set of all germs (\mathcal{C}^{∞} maps) at a particular point $a \in \mathbb{R}^n$ (i.e., set of all such equivalence classes) is denoted by \mathcal{C}^{∞}_a . This is really an \mathbb{R} -algebra.

Definition (Derivation)

An \mathbb{R} -linear map $D : \mathcal{C}^{\infty}_{a} \to \mathbb{R}$ is said to be a derivation if $D(uv) = (Du) \cdot v(a) + u(a) \cdot (Dv)$.

Derivations

Definition (Derivation)

An \mathbb{R} -linear map $D : \mathcal{C}^{\infty}_{a} \to \mathbb{R}$ is said to be a derivation if $D(uv) = (Du) \cdot v(a) + u(a) \cdot (Dv)$.

Example $D_{i,a} = \frac{\partial}{\partial x_i} \Big|_{a}$ is a derivation on C_a^{∞} .

For a smooth curve γ passing through a, define

$$D_{\boldsymbol{\gamma},\boldsymbol{a}}(f_{\boldsymbol{a}}) = \left. \frac{d}{dt} (f \circ \boldsymbol{\gamma})(t) \right|_{\boldsymbol{a}} \left(= \left\langle \nabla(f)(\boldsymbol{a}), \boldsymbol{\gamma}(0) \right\rangle \right)$$

This is injective!