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1 The upper half plane and hyperbolic geometry

1.1 Introduction

In Euclidean geometry, the parallel postulate (or Playfair’s axiom) is given by: In a plane, given a
line and a point not on it, there is at most one line passing through that point parallel to it. Euclid
questioned if the inventory for Euclidean lines (having five statements) could be reduced further. In
particular, he asked if the parallel line postulate could be proved using the other four.
Hyperbolic geometry is a non-Euclidean geometry in which this axiom does not hold (but the other
four do). The upper-half plane is the set H = {z ∈ C | Iz > 0}. We will see how ‘parallel lines‘
don’t have the same behaviour in Hyperbolic geometry as in Euclidean geometry.

1.2 Riemann sphere

We denote the unit sphere in R3 by S2 :=
{
p ∈ R3 : ‖p‖2 = 1

}
. We note a couple of special points,

namely, the north pole n(0, 0, 1) and the south pole s(0, 0,−1).

Consider the map σ : S2 r {n} → C given by σ(x, y, z) =
x+ iy

1− z
. This is a stereographic projection

from n. One must note that σ is a homeomorphism (where S2 is given the subspace topology of R3).
As we obtain C from S2 by removing a single point of S2, namely n, we can construct S2 by

starting with C and adding a single point denoted by ∞. The Riemann sphere is defined as the
union Ĉ = C ∪ {∞} with a complex manifold structure given on it, as follows. We can write
S2 = U

⋃
V where U = S2 r {n} , V = S2 r {s}. Note that these are open in S2. Define τ : V → C

by τ(z) =

{
0 if z = n
1

σ(z) otherwise
. We must note that the transition map τσ−1 is simply z 7→ 1

z , which

is biholomorphic.
The above construction of the Riemann sphere Ĉ from the complex plane C is an example of one-
point compactification.

We want to define open discts around the point ∞. On the sphere, these correspond to balls
drawn around n, and under the map σ, they map to complements of closed balls on the plane
C. This forces us to define that a Euclidean disk of radius ε centred at z = ∞ ∈ Ĉ is Bε(∞) :=

{w ∈ C : |w| > ε}∪{∞}. So, open neighbourhoods around∞ are just complements (in Ĉ) of compact
sets K ⊆ C.
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1.3 Length of a curve in H
Suppose we have a curve γ : [0, 1] → R2. We know that the length of this curve is given by∫ 1

0

|γ̇(t)| dt. In other words, if we have γ = (x, y) then the length of the curve is

∫ 1

0

√
ẋ(t)2 + ẏ(t)2 dt.

If s is the variable denoting the movement along the curve γ, then (∆s)2 ' (∆x)2 +(∆y)2. Here ∆x
really means x(t + ∆t) − x(t). Similarly for y and s. Letting ∆t → 0 gives |ds| =

√
(dx)2 + (dy)2.

In fact the length is really ∫
γ

|ds| =
∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

More generally denote the variable p = (x, y). Let A : R2 → R be a positive definite form (hence
symmetric), and consider ‖ds‖A :=

√
〈dp, A dp〉. This will allow us to measure length of curves:∫

γ

‖ds‖A =

∫ 1

0

√
a(γ(t))ẋ(t)2 + 2b(γ(t))ẋ(t)ẏ(t) + c(γ(t))ẏ(t)2 dt

where A(p) =

[
a(p) b(p)
b(p) c(p)

]
with the requirement that detA(p) > 0∀p ∈ R2

Consider the upper half plane in C, namely, H = {z ∈ C | =(z) > 0}. We may define the metric

|ds| :=
√

(dx)2 + (dy)2

y
=
|dz|
=z

.

With this metric, the length of a curve γ : [0, 1]→ H is given by

∫ 1

0

|γ̇(t)|
=γ(t)

dt.

Example. Consider the horizontal line γ : [0, 1] → H given by t 7→ (kt, b) where k ∈ R is a fixed
constant and b > 0. The length of this curve is∫ 1

0

√
ẋ(t)2 + ẏ(t)2

=γ(t)
dt =

∫ 1

0

|k|
b
dt =

|k|
b

Example. Consider the diagonal line γ : [0, 1]→ H given by t 7→ (a+ kt, b+ `t) where a ∈ R, b >
0, k ≥ 0, ` > 0 are constants. The length of this curve is

∫ 1

0

√
ẋ(t)2 + ẏ(t)2

=γ(t)
dt =

∫ 1

0

√
k2 + `2

b+ `t
dt =

√
1 +

(
k

`

)2

log

(
1 +

`

b

)

1.4 Geodesics in H
A geodesic is a (piecewise differentiable) curve which minimizes local distances. More formally, a
geodesic between two points z1, z2 ∈ H is a curve γ : [0, 1]→ H such that γ(0) = z1, γ(1) = z2 and
len(γ) = min

{
len(α)

∣∣ α ∈ H[0,1], α is piecewise differentiable, α(0) = z1, α(1) = z2
}

.

Fact. Say γ = (x, y) minimizes

∫ b

a

L (p(t), ṗ(t)) dt, where L is smooth, then the Euler-Lagrange

equation is satisfied:
∂L (γ, γ̇)

∂p
=

d

dt

∂L (γ, γ̇)

∂ṗ
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With this in mind, we can calculate the geodesics in our hyperbolic plane. Take L =

√
ẋ(t)2 + ẏ(t)2

y(t)
.

We have
∂L

∂x
=

d

dt

∂L

∂ẋ
=⇒ d

dt

(
ẋ

y
√
ẋ2 + ẏ2

)
= 0 =⇒ ẋ

y
√
ẋ2 + ẏ2

= c for some constant c.

Also,
∂L

∂y
=

d

dt

∂L

∂ẏ
=⇒

√
ẋ2 + ẏ2

−y2
=

d

dt

(
ẏ

y
√
ẋ2 + ẏ2

)
.

If we have c = 0 whence x(t) is a constant, giving us a straight line. Otherwise we have the
following:

√
ẋ2 + ẏ2

−y2ẋ
=

d
dt

(
ẏ

y
√
ẋ2+ẏ2

)
ẋ

=
d

dx

(
cẏ

ẋ

)
= cy′′

=⇒
√

1 + (y′)2 =
−y′′y2

y
√

1 + (y′)2

=⇒ 1

y
+

(y′)2

y
+ y′′ = 0

The above differential equation can be solved by substituting u = y′. The final solution comes
out to be (x − k)2 + y2 = r where r, k are some constants. This is clearly an (Euclidean) circle
with radius r centered at (k, 0). Since this circle passes through z1, z2 ∈ H (with <(z1) 6= <(z2)),
k can be uniquely determined simply with ruler-compass construction - it’s the intersection of the
perpendicular bisector of the segment joining z1, z2 with the real axis. In fact, even if we have
<(z1) = <(z2) we will get that x(t) is constant, whence the perpendicular bisector will meet the real

axis at ∞ ∈ Ĉ.
We have a result which makes this geometry ‘nice’:

Proposition 1.1. For each pair p and q of distinct points in H, there exists a unique hyperbolic
line l in H passing through p and q.

Proof. There are two cases to consider.
Suppose Rp = Rq. Then, the Euclidean line L = {z ∈ C | Rz = Rp} is perpendicular to the real
axis and passes through both p and q. So, l = H

⋂
L does the job.

Suppose Rp 6= Rq. Simply join p, q and draw their perpendicular bisector. Suppose this meets the
real axis at c. Then the circle C = ∂B|p−c|(c) is the unique Euclidean circle passing through p, q.
So l = C

⋂
H is the required hyperbolic line. �

Definition 1.2. Two hyperbolic lines in H are parallel if they are disjoint.

Finally we see how Hyperbolic geometry is fundamentally different from Euclidean geometry.

Theorem 1.3. Let l be a hyperbolic line in H, and let p be a point in H not on l. Then, there
exist infinitely many distinct hyperbolic lines through p that are parallel to l.

Proof. There are two cases to consider.
Suppose l is contained in a vertical Euclidean line L : x = k. Take a point x ∈ R between <p and k,
and let A be the Euclidean circle centred on R that passes through x and p. We have already seen
that such an Euclidean circle C is unique. We can do this for all x between <p, k.
Suppose l is contained in a Euclidean circle C which intersects the real axis at points a < b. WLOG
<p > b. Take any point x ∈ R between b and <p. Let E be the Euclidean circle centred on R that
passes through x and p. We can do this for infinitely many x between b,<p. �
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1.5 Distance between points in H
Consider points z0, z1 ∈ H. Distance between these points is simply the length (under the hyperbolic
metric) of the geodesic curve joining them.

For a moment assume that z0, z1 have unequal real parts. Then the perpendicular bisector of

the segment z0z1 is y(y1 − y0) + x(x1 − x0) +
x2
0+y

2
0−x

2
1−y

2
1

2 = 0. So, it meets the real axis at

the point
(
x2
1+y

2
1−x

2
0−y

2
0

2(x1−x0)
, 0
)

. WLOG we can assume that this meeting point is 0 ∈ C. This is

because translating along the real axis does not change the length (length of curve only depends on

y): just translate everything by
x2
1+y

2
1−x

2
0−y

2
0

2(x0−x1)
along the horizontal axis. So, we are assuming that

|z0| = |z1| = r (say).
So all we are left to find is the distance between z0,1 along the circle of radius r centered at 0.

This curve is just given by γ : [a, b]→ H, t 7→ r(cos t, sin t) where γ(a) = z0, γ(b) = z1. The length is∫ b

a

√
ẋ2 + ẏ2

y
dt =

∫ b

a

r

r sin t
dt =

∫ b

a

csc t dt = log

(
cot a+ csc a

cot b+ csc b

)
= arsinh(cot a)− arsinh(cot b)

Exercise 1.4. The distance between two points z1, z2 ∈ H is

2 arsinh

√
|z1|2 + |z2|2

4=(z1)=(z2)

1.6 Triangles in H
Triangles in H are determined the same way as Euclidean spaces. Choose any three distinct points
and draw ‘straight lines’ between them. We look at a triangle with one ideal point for this purpose.
An ideal point is a point at infinity (i.e., on ∂H).

In this case, the angles of our triangle are α, β, 0. α and β are the angles seen in quadrants
I and II respectively. Under our hyperbolic metric, we have an area element (a small rectangle):
dx
y
dy
y = dx dy

y2 . We integrate this element over the entire triangle to find its area. instead of varying

x, y we shall vary θ, y: Add thin vertical strips which meets the “circular” side at point (r cos θ, r sin θ)
(Here r is the Euclidean radius of the arc). So θ varies from α to π − β. And y varies from r sin θ
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to ∞. All this goes through because of Fubbini’s theorem. And we find our area to be

A =

∫ π−β

α

(∫ ∞
r sin θ

r sin θ dy

y2

)
dθ =

∫ π−β

α

dθ = π − α− β

.
Well, what about triangles with no ideal points? We will deduce that area using the above

discussion.

This turns out to be (we don’t write the third vertex if it is ∞)

A (A,B,C) = A (B,C) + A (A,C)−A (A,B) = π − α− β − γ

It finally stands that A + α+ β + γ = π.

2 The Poincaré disc

2.1 Möbius transformations

A Möbius transformation is a rational function f : C→ C of the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ C are such that ad− bc 6= 0. It is not hard to see that we can scale the numerator
and the denominator on the RHS expression of f and assume WLOG that ad − bc = 1. One may

think of this as f(z) =

[
a b
c d

] [
z
1

]
. In the resultant 2×1 vector, the elements at positions (1, 1) and

(1, 2) are the numerator and denominator respectively. It is a routine exercise to verify that such

5



an expression is well-defined. Hereafter, we will identify all Möbius transformations as elements of
SL(2,C).

We can extend f to f̂ : Ĉ→ Ĉ as follows.
If c = 0 we say

f̂(z) =

{
f(z) if z ∈ C
∞ if z =∞

If c 6= 0 we say

f̂(z) =


f(z) if z ∈ Cr

{−d
c

}
∞ if z = −d

c
a
c if z =∞

One can easily verify that f̂ is a homeomorphism. In fact, the group of Möbius transformations
Ĉ→ Ĉ is SL(2,C)/ {±I} = PSL(2,C).

Fact. If g : U → C is an injective holomorphic map (where U ⊂ C is a domain), then g is conformal.

Using this fact, we see the importance of Möbius transformations. Let U = Cr
{
f̂−1(∞)

}
. Now

it is not hard to see that f |U is injective. So g is conformal.

It turns out that the set of meromorphic conformal automorphisms of Ĉ is exactly PSL(2,C).

2.2 The disc D

We will be interested in the map ϕ :=

(
z 7→ z − i

z + i

)
which maps H to D. Visually, R∪{∞} maps to

the boundary of the unit circle∞→ 1, 1 7→ −i,−1 7→ i, 0 7→ −1. In fact this is an isometry between

H and D = {z ∈ C : |z| < 1}. We equip D with the metric |ds| = 2 |dz|
1− |z|2

=
2
√

(dx)2 + (dy)2

1− x2 − y2
.

Exercise 2.1. Check that the map ϕ : H→ D is indeed an isometry, and ϕ−1 = ψ :=
(
w 7→ i(1+w)

1−w

)
.

Exercise 2.2. |a|D =
∣∣eiθa∣∣D ∀a ∈ D, θ ∈ R.

From here it is clear that Euclidean circles, lying in D2, are indeed hyperbolic circles. Now take a
circle in D2 of Euclidean radius r. The Poincaré disc radius of this circle is simply dH (ψ(0), ψ(r)) =

dH

(
i, i

1 + r

1− r

)
= log

1 + r

1− r
. So, if we have n circles in D which are uniformly spaced (w.r.t. hy-

perbolic metric), say with radii d, 2d, . . . , nd, they correspond to Euclidean radii

{
ekd − 1

ekd + 1

}n
k=1

. To

imagine what the “look like”, as k becomes large, the Euclidean radii are ' 1− 2e−kd, i.e., they ‘get
exponentially close’.
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