Fiedler Vector Method

Project for Linear algebra and its Applications

Sagnik Dutta Nilava Metya Sagnik Mukherjee

$\boldsymbol{c}^{\boldsymbol{m}} \boldsymbol{i} \left\lvert\, \begin{aligned} & \text { Chennal } \\ & \text { Mastelenatical }\end{aligned}\right.$
INSTITUTE

May 08, 2022

1 The problem
2 Some spectral Graph Theory
3 What exactly do we want?
4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?
77 Some examples
8 Some questions

Statement

Given a (finite simple connected) graph $G=(V, E)$, partition $V=V_{1} \sqcup V_{2}$ such that the number of "cut" edges is minimized, while keeping $\left|V_{1}\right| \simeq\left|V_{2}\right|$.

1 The problem
2 Some spectral Graph Theory

3 What exactly do we want?
4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?

7 Some examples
8 Some questions

Terminology and definitions

To every finite undirected graph $G=(V, E)$, we can associate the following matrices:

- Adjacency matrix A of size $|V| \times|V| . A_{i, j}=\mathbf{1}_{\{i, j\} \in E}$.
- Degree matrix D of size $|V| \times|V| . D_{i, j}=\delta_{i}^{j} \cdot \operatorname{deg}(i)$.
- Incidence matrix H of size $|V| \times|E| . H_{v, e}=\left\{\begin{array}{ll}1 & \text { if } v \text { adjacent to edge } e \\ 0 & \text { else }\end{array}\right.$.
- Laplacian \mathcal{L} of size $|V| \times|V| . L=D-A$.

Elementary results

\mathcal{L} has real eigenvalues.
\mathcal{L} is real symmetric.
Fact: $\mathcal{L}=H H^{t}$.
\mathcal{L} is positive semidefinite.

$$
\mathcal{L} \boldsymbol{v}=\lambda \boldsymbol{v}, \text { then } \lambda\|\boldsymbol{v}\|^{2}=\langle\mathcal{L} \boldsymbol{v}, \boldsymbol{v}\rangle=\boldsymbol{v}^{t} H H^{t} \boldsymbol{v}=\left\|H^{t} \boldsymbol{v}\right\|^{2} .
$$

\mathcal{L} has only nonnegative eigenvalues. We note that the eigenvalue 0 is always achieved. Indeed, $\mathcal{L}(1, \cdots, 1)=(0, \cdots, 0)$.

1 The problem
2 Some spectral Graph Theory
3 What exactly do we want?

4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?

7 Some examples
8 Some questions

Modelling a partition

Recall that a partition of graph $G=(V, E)$ is a partition of $V=V_{1} \sqcup V_{2}$. For a partition $P=\left(V_{1}, V_{2}\right)$, define its cut $\mathfrak{C}(P)$ to be the number of edges in E with at least one endpoint in each V_{i}.

Think of a partition as assigning ± 1 to each vertex, with the agreement that vertex i lies in V_{1} when it's assigned +1 , and it's in V_{2} otherwise. Say vertex i is assigned x_{i}, which gives a vector $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$.

What is the cut value for the aforesaid assignment?

The cut value of partition $P=\left(V_{1}, V_{2}\right)$ is $\mathfrak{C}(P)=\sum_{\substack{\{i, j\} \in E \\ x_{i} \neq x_{j}}}$ 1. Some clever manipulation gives

$$
\begin{aligned}
4 \cdot \mathfrak{C}(P)=4 \sum_{\substack{\{i, j\} \in E \\
x_{i} \neq x_{j}}} 1 & =\sum_{\substack{\{i, j\} \in E \\
x_{i} \neq x_{j}}}(\pm 2)^{2}+\sum_{\substack{\{i, j\} \in E \\
x_{i}=x_{j}}} 0^{2} \\
& =\sum_{\substack{\{i, j\} \in E \\
x_{i} \neq x_{j}}}\left(x_{i}-x_{j}\right)^{2}+\sum_{\substack{\{i, j\} \in E \\
x_{i}=x_{j}}}\left(x_{i}-x_{j}\right)^{2} \\
& =\sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

What does $\left|V_{1}\right| \simeq\left|V_{2}\right|$ mean?

If V_{1} and V_{2} were to have the same number of vertices, it simply means that equal number of verticles are assigned +1 and -1 . This is to say that $\sum x_{i}=0$.

Conversely $\sum x_{i}=0$ (where each $x_{i} \in\{ \pm 1\}$) means that same number of vertices are assigned ± 1 each. That simply means $\left|V_{1}\right|=\left|V_{2}\right|$.

Now $\left|V_{1}\right| \simeq\left|V_{2}\right|$ simply means we want $\left|\sum x_{i}\right|$ to be as small as possible. That is, $\sum x_{i} \simeq 0$.

GOAL

Find $\boldsymbol{x} \in\{ \pm 1\}^{n}$ with $\sum x_{i} \simeq 0$ such that

$$
\sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2}
$$

is minimized.
Note that the condition of each x_{i} being ± 1 implies $\sum x_{i}^{2}=n$. The converse is true if we ask each $x_{i} \in[-1,1]$. So we are not giving up much.
Asking for only an approximate solution, we replace the condition $\sum x_{i} \simeq 0$ with $\sum x_{i}=0$.

NEW (approximate) GOAL

Find $\boldsymbol{x} \in \mathbb{R}^{n}$ with $\sum x_{i}=0$ such that

$$
\sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2}
$$

is minimized (subject to $\sum_{i} x_{i}^{2}=1$).

1 The problem
2 Some spectral Graph Theory

3 What exactly do we want?

4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?

7 Some examples
8 Some questions

Bring in the matrices ...

Some clever manipulation:

$$
\begin{aligned}
\sum_{\{i, j\} \in E}\left(x_{i}-x_{j}\right)^{2} & =\sum_{\{i, j\} \in E}\left(x_{i}^{2}+x_{j}^{2}-2 x_{i} x_{j}\right)=\sum_{i} \underbrace{\operatorname{deg}(i)}_{d_{i}} x_{i}^{2}-2 \sum_{\{i, j\} \in E} x_{i} x_{j} \\
& =x^{t}\left[\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right] \boldsymbol{x}-\boldsymbol{x}^{t} A \boldsymbol{x}=\boldsymbol{x}^{t}(D-A) \boldsymbol{x}=\boldsymbol{x}^{t} \mathcal{L} \boldsymbol{x}
\end{aligned}
$$

Illustration for

$\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{l}a_{11} x+a_{12} y \\ a_{21} x+a_{22} y\end{array}\right]=a_{11} x^{2}+\left(a_{12}+a_{21}\right) x y+a_{22} y^{2}$.
If the above matrix is symmetric, then the result is $a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}$.

1 The problem
2 Some spectral Graph Theory
3 What exactly do we want?

4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?

7 Some examples
8 Some questions

So our problem becomes ...

For what \boldsymbol{x} is $\boldsymbol{x}^{t} \mathcal{L} \boldsymbol{x}$ minimized, subject to $\|\boldsymbol{x}\|^{2}=n$ and $\langle\boldsymbol{x},(1, \cdots, 1)\rangle=0$.

An equivalent optimization problem is

Find the argument \boldsymbol{x} for

$$
\min _{\substack{x \perp(1, \ldots, 1) \\\|x\| \neq 0}} \frac{x^{t} \mathcal{L} x}{\|x\|^{2}}=\min _{\substack{x \perp 1, \ldots, 1) \\\|x\| \neq 0}} R_{\mathcal{L}}(\boldsymbol{x}) .
$$

Recall from class

If $A_{n \times n}$ is a real symmetric positive semidefinite matrix with eigenvalues
$0 \leq \lambda_{1} \leq \cdots \leq \lambda_{n}$ with eigenbasis $\left(\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right)$ (such that $A \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}$) then

$$
\min _{\substack{\boldsymbol{x} \perp\left\langle\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\rangle \\\|\boldsymbol{x}\| \neq 0}} R_{\mathcal{L}}(\boldsymbol{x})=\lambda_{k+1} .
$$

Our interest is

In particular for $k=1$

$$
\min _{\substack{x \perp(1, \ldots, 1) \\\|\boldsymbol{x}\| \neq 0}} R_{\mathcal{L}}(\boldsymbol{x})=\lambda_{2}
$$

because 0 is always an eigenvalue of \mathcal{L} corresponding to the eigenvector $(1,1, \cdots, 1)$.

Our algorithm

Initially we had asked that we'll take $i \in V_{1}$ if $x_{i}=+1$, and $i \in V_{2}$ if $x_{i}=-1$. But while arriving to our optimization problem, we were 'loose' about $x_{i} \in\{ \pm 1\}$, we now our alrorithm becomes:

Look at the $i^{t h}$ component of a Fiedler vector. If it is <0, put the $i^{t h}$ vertex in V_{1}, otherwise put it in V_{2}.

1 The problem
2 Some spectral Graph Theory
3 What exactly do we want?
4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?
7 Some examples
8 Some questions

Theorem (Fiedler's theorem of connectivity of spectral graph partitions)
Let $G=(V, E)$ be a connected graph and let $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ is the Fiedler vector for the Laplacian of this graph. Let $V_{1}=\left\{i: x_{i}>0\right\}$ and $V_{2}=V \backslash V_{1}$. Let G_{i} be the subgraphs induced by V_{i}. Then G_{i} are both connected.

Suppose not . . .

(Re)label the vertices in a way such that $V_{1}=\{1, \cdots, k\}, V_{2}=\{k+1, \cdots, n\}$. For the sake of contradiction suppose G_{1} has (at least) two connected components; say the vertices are $\{1, \cdots, t\}$ and $\{t+1, \cdots, k\}$. So the Laplacian looks like

$$
\mathcal{L}=\left[\begin{array}{ccc}
L_{11} & \mathbf{0} & L_{13} \\
\mathbf{0} & L_{22} & L_{23} \\
L_{13}^{T} & L_{23}^{T} & L_{33}
\end{array}\right] .
$$

By nature of \mathcal{L}, the entries of L_{13}, L_{23} are nonpositive. Write the similar block form for

$$
x=\left[\begin{array}{c}
\left(\boldsymbol{x}_{1}\right)_{t \times 1} \\
\left(\boldsymbol{x}_{2}\right)_{(k-t) \times 1} \\
\left(\boldsymbol{x}_{3}\right)_{(n-k) \times 1}
\end{array}\right] .
$$

where components of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ are positive and those of \boldsymbol{x}_{3} are negative.

We produce two eigenvalues of \mathcal{L} which are less than λ_{2}. Contradiction!

$$
\mathcal{L} x=\lambda_{2} x \Longrightarrow L_{11} x_{1}+L_{13} x_{3}=\lambda_{2} x_{1}
$$

Fix any positive real $\varepsilon>0$. Then $\left(\varepsilon I+L_{11}\right) \boldsymbol{x}_{1}+L_{13} \boldsymbol{x}_{3}=\left(\varepsilon+\lambda_{2}\right) \boldsymbol{x}_{1}$.
Assume that $\left(\varepsilon I+L_{11}\right)$ is invertible and its inverse Y is a positive matrix. Multiplying both sides of the above equation by Y, we get

$$
\begin{aligned}
\boldsymbol{x}_{1}+Y L_{13} \boldsymbol{x}_{3} & =\left(\varepsilon+\lambda_{2}\right) Y \boldsymbol{x}_{1} \\
\Longrightarrow \boldsymbol{x}_{1}^{T} \boldsymbol{x}_{1}+\boldsymbol{x}_{1}^{T} Y L_{13} \boldsymbol{x}_{3} & =\left(\varepsilon+\lambda_{2}\right) \boldsymbol{x}_{1}^{T} Y \boldsymbol{x}_{1} \\
\Longrightarrow\left(\varepsilon+\lambda_{2}\right) \frac{\boldsymbol{x}_{1}^{T} Y \boldsymbol{x}_{1}}{\boldsymbol{x}_{1}^{T} \boldsymbol{x}_{1}} & =1+\frac{\boldsymbol{x}_{1}^{T} Y L_{13} \boldsymbol{x}_{3}}{\boldsymbol{x}_{1}^{T} \boldsymbol{x}_{1}}>1 \\
\Longrightarrow\left(\varepsilon+\lambda_{2}\right) \lambda_{t}(Y) & =\left(\varepsilon+\lambda_{2}\right) \max _{v \neq 0} \frac{v^{T} Y v}{v^{T} v}>1 \\
\Longrightarrow \lambda_{1}\left(\varepsilon I+L_{11}\right) & =1 / \lambda_{t}(Y)<\varepsilon+\lambda_{2} \\
\Longrightarrow \varepsilon+\lambda_{1}\left(L_{11}\right) & <\varepsilon+\lambda_{2}
\end{aligned}
$$

Hence $\lambda_{1}\left(L_{11}\right)<\lambda_{2}$. Similarly, $\lambda_{1}\left(L_{22}\right)<\lambda_{2}$.

If the eigenvectors corresponding to $\lambda_{1}\left(L_{11}\right)$ and $\lambda_{1}\left(L_{22}\right)$ are v_{1} and v_{2} respectively, then

$$
\left[\begin{array}{cc}
L_{11} & 0 \\
0 & L_{22}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]=\lambda_{1}\left(L_{11}\right)\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
L_{11} & 0 \\
0 & L_{22}
\end{array}\right]\left[\begin{array}{c}
v_{2} \\
0
\end{array}\right]=\lambda_{1}\left(L_{22}\right)\left[\begin{array}{c}
v_{2} \\
0
\end{array}\right]
$$

Thus the matrix $\left[\begin{array}{cc}L_{11} & 0 \\ 0 & L_{22}\end{array}\right]$ has two eigenvalues less than λ_{2}.

Theorem (Cauchy Interlacing theorem)

Let $A_{n \times n}$ be a symmetric matrix and $B_{m \times m}$ be a principal submatrix of A. Further, let the eigenvalues of A be $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and the eigenvalues of B be $\beta_{1} \leq \cdots \leq \beta_{m}$. Then, for all $k \leq m$, the matrix A has at least k eigenvalues less than or equal to β_{k}.

By Cauchy Interlacing theorem, \mathcal{L} has two eigenvalues less than λ_{2}, which is a contradiction!

Now we show that $\left(\varepsilon I+L_{11}\right)$ is invertible and its inverse Y is positive.

$$
\begin{aligned}
& \varepsilon I+L_{11} \\
& =D-N \\
& =D^{1 / 2}\left(I-D^{-1 / 2} N D^{-1 / 2}\right) D^{1 / 2} \\
& =D^{1 / 2}(I-M) D^{1 / 2}
\end{aligned}
$$

Because of some useful properties of M, it can be shown that $(I-M)^{-1}=\sum_{l=0}^{\infty} M^{l}$.

$$
\begin{aligned}
\therefore Y & =\left(\varepsilon I+L_{11}\right)^{-1} \\
& =D^{-1 / 2}(I-M)^{-1} D^{-1 / 2} \\
& =D^{-1 / 2} \cdot \sum_{l=0}^{\infty} M^{l} \cdot D^{-1 / 2}
\end{aligned}
$$

Y is positive as $\sum_{l=0}^{\infty} M^{l}$ is positive.

1 The problem
2 Some spectral Graph Theory
3 What exactly do we want?
4 Where does spectral graph theory come in?
5 Our new (approximate) problem and solution
6 Why does this give connected subgraphs?
7 Some examples
8 Some questions

Example 1

Example 1: But...

Example 2

Example 3

Example 4

Example 5

Example 5: But...

$C(P)=13$

1 The problem
2 Some spectral Graph Theory
3 What exactly do we want？
4 Where does spectral graph theory come in？
5 Our new（approximate）problem and solution
6 Why does this give connected subgraphs？
77 Some examples
8 Some questions

What effect does connectedness have on λ_{2} ?

Lemma

$\lambda_{2}>0 \Longleftrightarrow$ the graph connected.

Proof.

If G has two connected components, then $(1 \cdots, 1,0 \cdots, 0)$ and $(1 \cdots, 1,0 \cdots, 0)$ are LI eigenvectors for 0 .
If G is connected, then use $\boldsymbol{v}^{t} \mathcal{L} \boldsymbol{v}=\sum_{\{i, j\} \in E}\left(v_{i}-v_{j}\right)^{2}$ to show that geometric (=algebraic) multiplicity of 0 is one.

Terminology

λ_{2} is also called the algebraic connectivity of the graph.

What if all components are positive?

Say $\mathcal{L} \boldsymbol{v}=\lambda \boldsymbol{v}$ with $\lambda>0$.

$$
\begin{gathered}
l_{11} v_{1}+\cdots+l_{1 n} v_{n}=\lambda v_{1} \\
\vdots \\
l_{n 1} v_{1}+\cdots+l_{n n} v_{n}=\lambda v_{n}
\end{gathered}
$$

Adding these gives $\sum_{i=1}^{n} l_{i 1} v_{1}+\cdots+\sum_{i=1}^{n} l_{\text {in }} v_{n}=\lambda \sum_{i=1}^{n} v_{i}$. All the red sums are 0 because of
the way \mathcal{L} is defined. It follows that $\sum_{i} v_{i}=0$ because $\lambda>0$.

How to balance so many 0's (if at all)?

What do we do if there are only a few nonzero components of the Fiedler vector and a bunch of 0 's?

One conjecture we made was

For a connected graph G with Laplacian \mathcal{L}, let \boldsymbol{v} be a Fiedler vector. Look at $S=\left\{i: v_{i}=0\right\}$. Then for each $i \in S, \exists j, k$ such that $v_{j}>0, v_{k}<0$ and both j and k are neighbours of i.

The above conjecture is false. A counterexample is $K_{n, n}$, the complete bipartite graph on $2 n$ vertices.

