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The problem

Statement

Given a (finite simple connected) graph G = (V,E), partition V = V1 ⊔ V2 such that the
number of “cut” edges is minimized, while keeping |V1| ≃ |V2|.
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Some spectral Graph Theory

Terminology and definitions

To every finite undirected graph G = (V,E), we can associate the following matrices:

Adjacency matrix A of size |V | × |V |. Ai,j = 1{i,j}∈E .

Degree matrix D of size |V | × |V |. Di,j = δji · deg(i).

Incidence matrix H of size |V | × |E|. Hv,e =

{
1 if v adjacent to edge e

0 else
.

Laplacian L of size |V | × |V |. L = D −A.
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Some spectral Graph Theory

Elementary results

L has real eigenvalues.

L is real symmetric. ■

Fact: L = HHt.

L is positive semidefinite.

Lv = λv, then λ ∥v∥2 = ⟨Lv,v⟩ = vtHHtv = ∥Htv∥2. ■

L has only nonnegative eigenvalues. We note that the eigenvalue 0 is always achieved.
Indeed, L(1, · · · , 1) = (0, · · · , 0).
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What exactly do we want?

Modelling a partition

Recall that a partition of graph G = (V,E) is a partition of V = V1 ⊔ V2. For a partition
P = (V1, V2), define its cut C(P ) to be the number of edges in E with at least one endpoint
in each Vi.

Think of a partition as assigning ±1 to each vertex, with the agreement that vertex i lies
in V1 when it’s assigned +1, and it’s in V2 otherwise. Say vertex i is assigned xi, which
gives a vector xxx = (x1, · · · , xn).
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What exactly do we want?

What is the cut value for the aforesaid assignment?

The cut value of partition P = (V1, V2) is C(P ) =
∑

{i,j}∈E

xi ̸=xj

1. Some clever manipulation gives

4 · C(P ) = 4
∑

{i,j}∈E

xi ̸=xj

1 =
∑

{i,j}∈E

xi ̸=xj

(±2)2 +
∑

{i,j}∈E
xi=xj

02

=
∑

{i,j}∈E

xi ̸=xj

(xi − xj)
2 +

∑
{i,j}∈E
xi=xj

(xi − xj)
2

=
∑

{i,j}∈E

(xi − xj)
2
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What exactly do we want?

What does |V1| ≃ |V2| mean?

If V1 and V2 were to have the same number of vertices, it simply means that equal number
of verticles are assigned +1 and −1. This is to say that

∑
xi = 0.

Conversely
∑

xi = 0 (where each xi ∈ {±1}) means that same number of vertices are
assigned ±1 each. That simply means |V1| = |V2|.

Now |V1| ≃ |V2| simply means we want |
∑

xi| to be as small as possible. That is,
∑

xi ≃ 0.
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What exactly do we want?

GOAL

Find xxx ∈ {±1}n with
∑

xi ≃ 0 such that∑
{i,j}∈E

(xi − xj)
2

is minimized.

Note that the condition of each xi being ±1 implies
∑

x2
i = n. The converse is true if we

ask each xi ∈ [−1, 1]. So we are not giving up much.
Asking for only an approximate solution, we replace the condition

∑
xi ≃ 0 with

∑
xi = 0.
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What exactly do we want?

NEW (approximate) GOAL

Find xxx ∈ Rn with
∑

xi = 0 such that ∑
{i,j}∈E

(xi − xj)
2

is minimized (subject to
∑

i x
2
i = 1).
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Where does spectral graph theory come in?

Bring in the matrices · · ·

Some clever manipulation:∑
{i,j}∈E

(xi − xj)
2 =

∑
{i,j}∈E

(
x2
i + x2

j − 2xixj

)
=

∑
i

deg(i)︸ ︷︷ ︸
di

x2
i − 2

∑
{i,j}∈E

xixj

=xxxt

d1 . . .

dn

xxx− xxxtAxxx = xxxt(D −A)xxx = xxxtLxxx

Illustration for =[
x y

] [a11 a12
a21 a22

] [
x
y

]
=

[
x y

] [a11x+ a12y
a21x+ a22y

]
= a11x

2 + (a12 + a21)xy + a22y
2.

If the above matrix is symmetric, then the result is a11x
2 + 2a12xy + a22y

2.
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Our new (approximate) problem and solution

So our problem becomes · · ·

For what xxx is xxxtLxxx minimized, subject to ∥xxx∥2 = n and ⟨xxx, (1, · · · , 1)⟩ = 0.

An equivalent optimization problem is

Find the argument xxx for

min
xxx⊥(1,··· ,1)

∥xxx∥≠0

xxxtLxxx
∥xxx∥2

= min
xxx⊥(1,··· ,1)

∥xxx∦=0

RL(xxx).
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Our new (approximate) problem and solution

Recall from class

If An×n is a real symmetric positive semidefinite matrix with eigenvalues
0 ≤ λ1 ≤ · · · ≤ λn with eigenbasis (vvv1, · · · , vvvn) (such that Avvvi = λivvvi) then

min
xxx⊥⟨vvv1,··· ,vvvk⟩

∥xxx∦=0

RL(xxx) = λk+1.
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Our new (approximate) problem and solution

Our interest is

In particular for k = 1

min
xxx⊥(1,··· ,1)

∥xxx∦=0

RL(xxx) = λ2

because 0 is always an eigenvalue of L corresponding to the eigenvector (1, 1, · · · , 1).
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Our new (approximate) problem and solution

Our algorithm

Initially we had asked that we’ll take i ∈ V1 if xi = +1, and i ∈ V2 if xi = −1. But while
arriving to our optimization problem, we were ‘loose’ about xi ∈ {±1}, we now our
alrorithm becomes:

Look at the ith component of a Fiedler vector. If it is < 0, put the ith vertex in V1,
otherwise put it in V2.
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Why does this give connected subgraphs?

Theorem (Fiedler’s theorem of connectivity of spectral graph partitions)

Let G = (V,E) be a connected graph and let xxx = (x1, · · · , xn) is the Fiedler vector for the
Laplacian of this graph. Let V1 = {i : xi > 0} and V2 = V ∖ V1. Let Gi be the subgraphs
induced by Vi. Then Gi are both connected.
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Why does this give connected subgraphs?

Suppose not . . .

(Re)label the vertices in a way such that V1 = {1, · · · , k} , V2 = {k + 1, · · · , n}. For the
sake of contradiction suppose G1 has (at least) two connected components; say the vertices
are {1, · · · , t} and {t+ 1, · · · , k}. So the Laplacian looks like

L =


L11 000 L13

000 L22 L23

LT
13 LT

23 L33

 .

By nature of L, the entries of L13, L23 are nonpositive. Write the similar block form for

xxx =

 (xxx1)t×1

(xxx2)(k−t)×1

(xxx3)(n−k)×1

 .

where components of xxx1,xxx2 are positive and those of xxx3 are negative.
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Why does this give connected subgraphs?

We produce two eigenvalues of L which are less than λ2. Contradiction!

Lxxx = λ2xxx =⇒ L11xxx1 + L13xxx3 = λ2xxx1

Fix any positive real ε > 0. Then (εI + L11)xxx1 + L13xxx3 = (ε+ λ2)xxx1.
Assume that (εI + L11) is invertible and its inverse Y is a positive matrix. Multiplying
both sides of the above equation by Y , we get

xxx1 + Y L13xxx3 = (ε+ λ2)Y xxx1

=⇒ xxxT
1 xxx1 + xxxT

1 Y L13xxx3 = (ε+ λ2)xxx
T
1 Y xxx1

=⇒ (ε+ λ2)
xxxT
1 Y xxx1

xxxT
1 xxx1

= 1 +
xxxT
1 Y L13xxx3

xxxT
1 xxx1

> 1

=⇒ (ε+ λ2)λt(Y ) = (ε+ λ2)max
v ̸=0

vTY v

vT v
> 1

=⇒ λ1(εI + L11) = 1/λt(Y ) < ε+ λ2

=⇒ ε+ λ1(L11) < ε+ λ2

Hence λ1(L11) < λ2. Similarly, λ1(L22) < λ2.
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Why does this give connected subgraphs?

If the eigenvectors corresponding to λ1(L11) and λ1(L22) are v1 and v2 respectively, then[
L11 0
0 L22

] [
v1
0

]
= λ1(L11)

[
v1
0

]
and

[
L11 0
0 L22

] [
v2
0

]
= λ1(L22)

[
v2
0

]
.

Thus the matrix

[
L11 0
0 L22

]
has two eigenvalues less than λ2.

Theorem (Cauchy Interlacing theorem)

Let An×n be a symmetric matrix and Bm×m be a principal submatrix of A. Further, let the
eigenvalues of A be λ1 ≤ · · · ≤ λn and the eigenvalues of B be β1 ≤ · · · ≤ βm. Then, for all
k ≤ m, the matrix A has at least k eigenvalues less than or equal to βk.

By Cauchy Interlacing theorem, L has two eigenvalues less than λ2, which is a
contradiction!
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Why does this give connected subgraphs?

Now we show that (εI + L11) is invertible and its inverse Y is positive.

εI + L11

= D −N

= D1/2(I −D−1/2ND−1/2)D1/2

= D1/2(I −M)D1/2

Because of some useful properties of M , it can be shown that (I −M)−1 =
∞∑
l=0

M l.

∴ Y = (εI + L11)
−1

= D−1/2(I −M)−1D−1/2

= D−1/2 ·
∞∑
l=0

M l ·D−1/2

Y is positive as
∞∑
l=0

M l is positive.
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Some questions

What effect does connectedness have on λ2?

Lemma

λ2 > 0 ⇐⇒ the graph connected.

Proof.

If G has two connected components, then (1 · · · , 1, 0 · · · , 0) and (1 · · · , 1, 0 · · · , 0) are LI
eigenvectors for 0.
If G is connected, then use vvvtLvvv =

∑
{i,j}∈E

(vi − vj)
2 to show that geometric (=algebraic)

multiplicity of 0 is one. ■

Terminology

λ2 is also called the algebraic connectivity of the graph.
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Some questions

What if all components are positive?

Say Lvvv = λvvv with λ > 0.

l11v1 + · · ·+ l1nvn = λv1

...

ln1v1 + · · ·+ lnnvn = λvn

Adding these gives
n∑

i=1

li1v1 + · · ·+
n∑

i=1

linvn = λ
n∑

i=1

vi. All the red sums are 0 because of

the way L is defined. It follows that
∑

i vi = 0 because λ > 0.
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Some questions

How to balance so many 0’s (if at all)?

What do we do if there are only a few nonzero components of the Fiedler vector and a
bunch of 0’s?

One conjecture we made was

For a connected graph G with Laplacian L, let vvv be a Fiedler vector. Look at
S = {i : vi = 0}. Then for each i ∈ S,∃j, k such that vj > 0, vk < 0 and both j and k are
neighbours of i.

The above conjecture is false. A counterexample is Kn,n, the complete bipartite graph on
2n vertices.
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