
Fiedler Vector Method

Sagnik Dutta, Nilava Metya, Sagnik Mukherjee
Chennai Mathematical Institute

May 24, 2022

Contents
1 Introduction 2

1.1 Basic Facts . 2

2 Developing the solution 4
2.1 Mathematically modelling the problem . 4
2.2 Spectral Graph Theory . 5

3 The Main Theorem 7

4 Examples 10

5 Some natural questions 13
5.1 What effect does connectedness have on λ2 (of L)? 13
5.2 What if all entries in the Fiedler vector are positive? 13
5.3 How to balance the 0’s (if at all) in the Fiedler vector? 13

1

1 INTRODUCTION

1 Introduction
The Fiedler vector of a graph, namely the eigenvector corresponding to the second smallest eigen-
value of a graph’s Laplacian matrix, plays an important role in spectral graph theory with applica-
tions in problems such as graph bi-partitioning and envelope reduction. The problem we want to
discuss is as follows:

Statement of the Problem: Given a finite simple connected graph G = (V,E), partition the vertex
set as V = V1 ⊔ V2 such that the number of cut edges is minimized while keeping|V1| ≃|V2|.

Here a "cut" edge simply means an edge which has one endpoint in V1 and the other in V2.
In the presentation, we discussed the Fielder Vector method, which was introduced by Fiedler in [1]
as an efficient way of solving this problem. Our presentation is based on the survey [3] written by
Brian Slininger where he discussed in detail about the Fiedler vector method and its shortcomings,
which we also have discussed in our presentation.

First, let us recall some basic facts from Spectral Graph theory.

1.1 Basic Facts
Given a graph G = (V,E), we can define several matrices to record the data of the graph (after
labeling each vertex by some integer between 1 and n := |V |), for example

• Adjacency Matrix: A matrix A of size|V | ×|V |, such that Aij = 1{i,j} ∈ E

• Degree Matrix: A matrix D of size|V | ×|V | such that Dij = δji · deg(i).

• Incidence Matrix: A matrix H of size|V | ×|E| such that

Hv,e =

{
1 if v is adjacent to e
0 otherwise (1)

• Laplacian: The Laplacian is defined as L := D − A

Laplacian of a given graph is going to be the most important matrix for us in this presentation. Let
us recall some basic facts about the Laplacian too:

• L is symmetric and hence its all eigenvalues are real.

• L = HH t.

• The eigenvalues of L are non-negative. Hence L is positive semi-definite (PSD).

Proof. Let λ be an eigenvalue of L with corresponding eigenvector to be v. Then Lv =

λv =⇒ ⟨Lv, v⟩ = ⟨λv, v⟩ = λ∥v∥2. But ⟨Lv, v⟩ = vtLv = vtHH tv =
∥∥H tv

∥∥2. This
means λ∥v∥2 =

∥∥H tv
∥∥2

=⇒ λ ≥ 0. ■

Page 2

1.1 Basic Facts 1 INTRODUCTION

• 0 is an eigenvalue of L with corresponding eigenvector (1, 1, · · · , 1).

Proof. The ith entry of L · (1, · · · , 1) is simply deg(i)−
∑

j:{ i,j }∈E

1 = 0. ■

Page 3

2 DEVELOPING THE SOLUTION

2 Developing the solution
We now try to develop the solution. Our first goal is to mathematically formulate the problem.

2.1 Mathematically modelling the problem
Let the graph be G := (V,E). Then the problem at hand is to define a partition of V in to
V = V1 ⊔ V2 such that the number of cut edges is minimum. But also we have a constraint, i.e.
|V1| = |V2|. So we have to mathematically model two things;

1. Find some mathematical formula for the number of cut edges for a given partition of the
vertex set.

2. (The constraint) Find some mathematical formula to describe the equipartition of the vertex
set.

First let us try to mathematically describe the equipartition of the vertex set.
Suppose the vertex set V has a partition P = (V1, V2). Then assign the value 1 to each vertex in V1

and −1 to each vertex in V2. This way we assign to the ith vertex a value xi ∈ {±1}. This gives us
a vector xxx := (xi)

n
i=1. Now note the following:

Lemma 2.1. P is a equipartition of V iff
n∑

i=1

xi = 0 ≡ xxx ⊥ (1, 1, · · · , 1).

Proof. We have an equipartition iff
∣∣{i : xi = 1}

∣∣ = ∣∣{i : xi = −1}
∣∣ iff

n∑
i=1

xi = 0. ■

Thus we have the mathematical formulation of the constraint (1)

An equipartition of the vertex set ≡
n∑

i=1

xi = 0 ≡ xxx ⊥ (1, 1, · · · , 1).

We can have an additional constraint:
n∑

i=1

x2
i = n

Putting these together, we have the following set of constraints:

n∑
i=1

xi = 0 ≡ xxx ⊥ (1, 1, · · · , 1)

and
n∑

i=1

x2
i = n

Page 4

2.2 Spectral Graph Theory 2 DEVELOPING THE SOLUTION

Now let us find the number of cut edges for a given partition of the vertex set.
So let P = (V1, V2) be a partition of V . Then note that the number of cut edges (technical name:
cut value)

C(P) =
∑

{i,j}∈E
xi ̸=xj

1

We shall find an alternate and more useful version of C(P).

4 · C(P) = 4 ·
∑

{i,j}∈E
xi ̸=xj

1 =
∑

{i,j}∈E
xi ̸=xj

(±2)2 +
∑

{i,j}∈E
xi=xj

02

=
∑

{i,j}∈E
xi ̸=xj

(xi − xj)
2 +

∑
{i,j}∈E
xi=xj

(xi − xj)
2

=
∑

{i,j}∈E

(xi − xj)
2

With this formulation our problem is now as follows.

Problem: Minimize
∑

{i,j}∈E

(xi − xj)
2 subjected to the constraints

n∑
i=1

xi = 0 ≡ xxx ⊥ (1, · · · , 1)

and
n∑

i=1

x2
i = n.

Let’s reformulate the above statement using the language of spectral graph theory.

2.2 Spectral Graph Theory
We can rewrite the expression

∑
{i,j}∈E(xi − xj)

2 as follows:∑
{i,j}∈E

(xi − xj)
2 =

∑
{i,j}∈E

x2
i + x2

j − 2xixj =
∑
i

deg(i)x2
i − 2

∑
{i,j}∈E

xixj

= xxxtDxxx− xxxtAxxx = xxxt(D − A)xxx = xxxtLxxx

Thus our new version of the problem is

Problem: (1st Version) Find xxx which minimizes xxxtLxxx subjected to the constraints∥xxx∥2 = n and〈
xxx, (1, · · · , 1)

〉
= 0.

We can have an alternate and more useful version of the above.

Problem: (2nd Version) Find argmin
xxx⊥(1,1,···,1)

∥xxx∦=0

xxxtLxxx

∥xxx∥2
= argmin

xxx⊥(1,···,1)
∥xxx∥≠0

RL(xxx)

where RL(xxx) is the Rayleigh Quotient.

Now recall the following fact from the lecture.

Page 5

2.2 Spectral Graph Theory 2 DEVELOPING THE SOLUTION

Theorem 2.2. If An×n is a real PSD matrix with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn with
eigenbasis (v1, · · · , vn) then

min
xxx⊥⟨v1,v2,···,vk⟩

∥xxx∥≠0

RL(xxx) = λk+1

Note that for L, λ1 = 0 and v1 = (1, · · · , 1), so that

min
xxx⊥(1,1,···,1)

∥xxx∥≠0

RL(xxx) = λ2

That is how the second eigenvalue and hence the second eignevector (called the Fiedler Vector) of
the Laplacian comes to picture. Based on this, we design the following algorithm of finding xxx and
hence the desired partition;

Algorithm: Look at the ith component of the Fiedler vector. If it is < 0 put ith in V1,
otherwise put it in V2.

Page 6

3 THE MAIN THEOREM

3 The Main Theorem
First we state a few lemmas and theorems that we will need to prove the main theorem of [3]:

Theorem 3.1 (Cauchy Interlacing theorem). Let An×n be a symmetric matrix and Bm×m be a
principal submatrix of A. Further, let the eigenvalues of A be λ1 ≤ · · · ≤ λn and the eigenvalues
of B be β1 ≤ · · · ≤ βm. Then, for all k ≤ m, the matrix A has at least k eigenvalues less than or
equal to βk.

A proof of the above theorem can be found in [2].

Lemma 3.2. Let An×n be a matrix and Xn×n be a nonsingular matrix. Then, XTAX is symmetric
positive-definite if and only if A is symmetric positive-definite.

Proof.

A is positive-definite =⇒ ∀v ∈ Rn(v ̸= 0), (Xv)TA(Xv) > 0

=⇒ ∀v ∈ Rn(v ̸= 0), vT (XTAX)v > 0

=⇒ XTAX is positive-definite
XTAX is positive-definite =⇒ ∀v ∈ Rn(v ̸= 0), (X−1v)T (XTAX)(X−1v) > 0

=⇒ ∀v ∈ Rn(v ̸= 0), vTAv > 0

=⇒ A is positive-definite

■

Lemma 3.3. Let A be an n× n symmetric matrix. If ρ(A) < 1 i.e. the spectral radius of A is less
than 1, then (In − A) is nonsingular and (In − A)−1 =

∑∞
l=0A

l.

Proof. AsA is symmetric, from spectral theorem it follows thatA has an eigenvalue decomposition
A = QΛQT where Λ is a diagonal matrix containing the eigenvalues of A as diagonal entries and

QQT = I . Then
∞∑
l=0

Al = Q(
∞∑
l=0

Λl)QT is convergent as the entries ofΛ have absolute value less than

1. Now notice that (I−A)·
m∑
l=0

Al = I−Am+1 since it is a telescoping series. Asm tends to infinity,

the matrix Am+1 = QΛm+1QT tends to the zero matrix, again because of the fact that the entries of

Λ have absolute value less than 1. Hence (I−A) ·
∞∑
l=0

Al = ·
∞∑
l=0

Al ·(I−A) = lim
m→∞

(I−Am+1) = I

which implies (In − A)−1 =
∑∞

l=0 A
l. ■

Now we are ready to prove the main theorem.

Theorem 3.4 (Fiedler’s theorem of connectivity of spectral graph partitions). Let G = (V,E) be
a connected graph and let xxx = (x1, · · · , xn) is the Fiedler vector for the Laplacian of this graph.
Let V1 = { i : xi > 0 } and V2 = V ∖ V1. Let Gi be the subgraph induced by Vi. Then Gi are both
connected.

Page 7

3 THE MAIN THEOREM

Proof. Relabel the vertices in a way such that V1 = { 1, · · · , k } , V2 = { k + 1, · · · , n }. For the
sake of contradiction, suppose G1 is not connected. Then we can partition V1 into two subsets
{ 1, · · · , t } and { t+ 1, · · · , k } such that there are no edges between these two subsets of vertices.
Hence the Laplacian looks like

L =

L11 000 L13

000 L22 L23

LT
13 LT

23 L33

 .

By nature of L, the entries of L13, L23 are non-positive. Write a similar block form for

xxx =

 (xxx1)t×1

(xxx2)(k−t)×1

(xxx3)(n−k)×1

 .

where components of xxx1,xxx2 are positive and those of xxx3 are negative.
As xxx is the eigenvector of L corresponding to the eigenvalue λ2, we have Lxxx = λ2xxx
=⇒ L11xxx1 + L13xxx3 = λ2xxx1

Fix any positive real ϵ > 0. Then adding ϵxxx1 to both sides of the above equation, we get

(ϵI + L11)xxx1 + L13xxx3 = (ϵ+ λ2)xxx1

We will need the following lemma which we will prove later:

Lemma 3.5. (ϵI + L11) is invertible and its inverse Y is a positive matrix.

Assuming this lemma and multiplying both sides of the above equation by Y = (ϵI + L11)
−1, we

get

xxx1 + Y L13xxx3 = (ϵ+ λ2)Y xxx1

=⇒ xxxT
1xxx1 + xxxT

1 Y L13xxx3 = (ϵ+ λ2)xxx
T
1 Y xxx1

=⇒ (ϵ+ λ2)
xxxT
1 Y xxx1

xxxT
1xxx1

= 1 +
xxxT
1 Y L13xxx3

xxxT
1xxx1

> 1

where the last inequality follows from the facts that x1, Y are positive matrices, x3 is a negative
vector and L13 is a non-positive matrix, but not the zero matrix (because if L13 is the zero matrix,
then the graph G itself is disconnected, which is a contradiction). Let λt(Y) denote the t-th
eigenvalue i.e. the largest eigenvalue of Y and let λ1(ϵI + L11) denote the smallest eigenvalue of
ϵI + L11. Then we have

(ϵ+ λ2)λt(Y) = (ϵ+ λ2)max
v ̸=0

vTY v

vTv
≥ (ϵ+ λ2)

xxxT
1 Y xxx1

xxxT
1xxx1

> 1

=⇒ λ1(ϵI + L11) = 1/λt(Y) < ϵ+ λ2

=⇒ ϵ+ λ1(L11) < ϵ+ λ2

Page 8

3 THE MAIN THEOREM

Hence λ1(L11) < λ2. Similarly, λ1(L22) < λ2. If the eigenvectors corresponding to λ1(L11) and
λ1(L22) are v1 and v2 respectively, then[

L11 0
0 L22

][
v1
0

]
= λ1(L11)

[
v1
0

]
and

[
L11 0
0 L22

][
0
v2

]
= λ1(L22)

[
0
v2

]
.

Thus the principal submatrix

[
L11 0
0 L22

]
of L has two eigenvalues less than λ2. Then by Theorem

3.1, L has two eigenvalues less than λ2, which is a contradiction! ■

Proof of Lemma 3.5. Write ϵI+L11 = D−N whereD is a non-negative diagonal matrix containing
the diagonal entries of ϵI + L11 and N contains all the off-diagonal entries with zeros along the
diagonal. Therefore we have

ϵI + L11

= D1/2(I −D−1/2ND−1/2)D1/2

= D1/2(I −M)D1/2 where M = D−1/2ND−1/2

Using Lemma 3.2 and the identity (D1/2)T = D1/2, we can see that I −M = D1/2(ϵI +L11)D
1/2

is positive-definite. Thus (I − M) has positive eigenvalues. If λ is an eigenvalue of M , then
1− λ is an eigenvalue of I −M , thereby implying that the eigenvalues of M are less than 1. The
eigenvalues of M are also greater than −1 by the following reasoning:

λ1(M) = min
v ̸=0

vTMv

vTv

≥ min
v ̸=0

−|v|TM |v|
vTv

= −max
v ̸=0

|v|TM |v|
vTv

≥ −λt(M) λt(M) is the largest eigenvalue of M
> −1

Hence ρ(M) < 1. Then it directly follows from Lemma 3.3 that (I −M)−1 =
∞∑
l=0

M l.

∴ Y = (ϵI + L11)
−1

= D−1/2(I −M)−1D−1/2

= D−1/2 ·
∞∑
l=0

M l ·D−1/2

M describes the adjacency matrix of a weighted graph. As Mij < 0 ⇐⇒ Nij < 0 ⇐⇒
(L11)ij > 0 for all i ̸= j and L11 describes the adjacency matrix of a connected weighted graph, it
follows that M also describes the adjacency matrix of a connected graph. Therefore a sufficiently
high power of M contains all positive entries, which implies that Y is a positive matrix. ■

Page 9

4 EXAMPLES

4 Examples
Below are the graphs as processed by the above algorithm, unless otherwise stated. The SageMath
code was created as a separate PDF file and has been appended at the end. For a couple of examples:

1. In this graph, the above algorithm gives a cut different from what would be optimal.

5. This example shows a highly unbalanced cut.

Figure 1: Example 1 as processed by the algorithm

Figure 2: Ideal cuts for Example 1

Figure 3: Example 2 as processed by the algorithm

Page 10

4 EXAMPLES

Figure 4: Example 3 as processed by the algorithm

Figure 5: Example 4 as processed by the algorithm

Page 11

4 EXAMPLES

Figure 6: Example 5 as processed by the algorithm

Figure 7: Some better balanced cuts for Example 5

Page 12

5 SOME NATURAL QUESTIONS

5 Some natural questions

5.1 What effect does connectedness have on λ2 (of L)?
The following lemma answers this questions. It also justifies why λ2 is called the algebraic
connectivity of the graph.

Lemma 5.1. λ2 > 0 ⇐⇒ the graph is connected.

Proof. (=⇒) If G has two connected components, then (1 · · · , 1, 0 · · · , 0) and (0 · · · , 0, 1 · · · , 1)
are linearly independent eigenvectors for 0. This means (λ1 =)λ2 = 0.
(⇐=) Suppose G is connected. If vvv is an eigenvector corresponding to 0 then 0 = vvvtLvvv =∑
{ i,j }∈E

(vi − vj)
2 =⇒ vi = vj for every edge { i, j }. Due to connectedness, vvv ∈

〈
(1, · · · , 1)

〉
. So,

geometric (= algebraic) multiplicity of (1, · · · , 1), which means that λ2 ̸= 0. ■

5.2 What if all entries in the Fiedler vector are positive?
Say Lvvv = λvvv with λ > 0.

l11v1 + · · ·+ l1nvn = λv1
...

ln1v1 + · · ·+ lnnvn = λvn

Adding these gives
n∑

i=1

li1v1 + · · ·+
n∑

i=1

linvn = λ
n∑

i=1

vi. All the red sums are 0 because of the way

L is defined. Indeed, the ith red sum has +degi contribution from i and −1 contribution from each
neighbour of i, which makes the total 0. It follows that

∑
i vi = 0 because λ > 0.

5.3 How to balance the 0’s (if at all) in the Fiedler vector?
As we saw in the examples, there can be cases where the presence of 0’s causes problems in
balancing the sizes of V1,2. What do we do if there are only a few nonzero components of the
Fiedler vector and a bunch of 0’s?
We do not have a solution to this yet, and this is indeed a drawback of the Fiedler vector method
because it gives only an approximate solution. By observation, we had conjectured that

For a connected graph G with Laplacian L, let vvv be a Fiedler vector.
Look at S = { i : vi = 0 }. Then for each i ∈ S,∃j, k such that

vj > 0, vk < 0 and both j and k are neighbours of i.

However, upon exploring further examples, we discovered that the conjecture is false. A counterex-
ample is Kn,n, the complete bipartite graph on 2n vertices.

Page 13

REFERENCES REFERENCES

References
[1] Miroslav Fiedler. “A property of eigenvectors of nonnegative symmetric matrices and its ap-

plication to graph theory”. eng. In: Czechoslovak Mathematical Journal 25.4 (1975), pp. 619–
633. url: http://eudml.org/doc/12900.

[2] R.A. Horn and C.R. Johnson. Matrix Analysis. Matrix Analysis. Cambridge University Press,
2013.

[3] Brian Slininger. Fiedler’s Theory of Spectral Graph Partitioning.
[4] Justin Wyss-Gallifent. Graph theory. https://www.math.umd.edu/~immortal/

MATH401/book/ch_graph_theory.pdf.

Page 14

http://eudml.org/doc/12900
https://www.math.umd.edu/~immortal/MATH401/book/ch_graph_theory.pdf
https://www.math.umd.edu/~immortal/MATH401/book/ch_graph_theory.pdf

Examples for the Fiedler-vector method on SageMath

May 24, 2022

[1]: e = [(1,2),(2,3), (3,4), (4,5), (5,6), (6,2), (1,3), (1,4), (1,5), (1,6)]
H = Graph()
H.add_edges(e)
L = H.laplacian_matrix()
u = L.eigenvalues()
u.sort()
n = L.nrows()
I = matrix.identity(n)
v = (L-u[1]*I).kernel().basis()
H.show()
fv = []
for i in v[0]:

fv.append(round(i, ndigits=7))
print("Eigenvalues:\n ",u, "\n")
print("Fiedler vector: \n",fv)
pos = []
neg = []
ze = []
for i in range(n):

#print(fv[i])
if (fv[i]>0):

pos.append(i+1)
elif (fv[i]<0):

neg.append(i+1)
else:

ze.append(i+1)
print("+: ",pos,"\n-: ",neg,"\n0: ",ze)

1

Eigenvalues:
[0, 2.381966011250106?, 2.381966011250106?, 4.618033988749895?,

4.618033988749895?, 6]

Fiedler vector:
[0.0, 1.0, -0.0, -1.0, -0.618034, 0.618034]

+: [2, 6]
-: [4, 5]
0: [1, 3]

2

[2]: e = [(1,8), (1,7), (9,10), (8,9), (8,10), (7,6), (6,5), (5,4), (4,3), (3,2),␣
↪→(2,1)]

H = Graph()
H.add_edges(e)
L = H.laplacian_matrix()
u = L.eigenvalues()
u.sort()
n = L.nrows()
I = matrix.identity(n)
v = (L-u[1]*I).kernel().basis()
H.show()
fv = []
for i in v[0]:

fv.append(round(i, ndigits=7))
print("Eigenvalues:\n ",u, "\n")
print("Fiedler vector: \n",fv)
pos = []
neg = []
ze = []
for i in range(n):

#print(fv[i])
if (fv[i]>0):

pos.append(i+1)
elif (fv[i]<0):

neg.append(i+1)
else:

ze.append(i+1)
print("+: ",pos,"\n-: ",neg,"\n0: ",ze)

3

Eigenvalues:
[0, 0.2374872911701323?, 0.7530203962825330?, 1, 2.445041867912629?,

2.563397064749295?, 3, 3.483178635798579?, 3.801937735804839?,
4.715937008281994?]

Fiedler vector:
[1.0, -2.2002617, -4.8779892, -6.3972563, -6.3972563, -4.8779892, -2.2002617,

7.1630361, 9.3939892, 9.3939892]
+: [1, 8, 9, 10]
-: [2, 3, 4, 5, 6, 7]
0: []

4

[3]: e = [(1,2), (1,3), (3,2), (3,4), (2,4), (2,5), (5,7), (5,6), (5,8), (7,8),␣
↪→(8,6), (8,7), (4,7)]

H = Graph()
H.add_edges(e)
L = H.laplacian_matrix()
u = L.eigenvalues()
u.sort()
n = L.nrows()
I = matrix.identity(n)
v = (L-u[1]*I).kernel().basis()
H.show()
fv = []
for i in v[0]:

fv.append(round(i, ndigits=7))
print("Eigenvalues:\n ",u, "\n")
print("Fiedler vector: \n",fv)
pos = []
neg = []
ze = []
for i in range(n):

#print(fv[i])
if (fv[i]>0):

pos.append(i+1)
elif (fv[i]<0):

neg.append(i+1)
else:

ze.append(i+1)
print("+: ",pos,"\n-: ",neg,"\n0: ",ze)

Eigenvalues:
[0, 0.6677534988349950?, 2, 2.905212412256926?, 4, 4, 4.600195693596128?,

5.826838395311951?]

Fiedler vector:
[1.0, 0.5123639, 0.8198826, 0.3998043, -0.5123639, -1.0, -0.3998043,

-0.8198826]

5

+: [1, 2, 3, 4]
-: [5, 6, 7, 8]
0: []

6

[4]: e = [(1,2), (1,3), (2,3), (1,4), (1,5), (4,5), (6,5)]
H = Graph()
H.add_edges(e)
L = H.laplacian_matrix()
u = L.eigenvalues()
u.sort()
n = L.nrows()
I = matrix.identity(n)
v = (L-u[1]*I).kernel().basis()
H.show()
fv = []
for i in v[0]:

fv.append(round(i, ndigits=7))
print("Eigenvalues:\n ",u, "\n")
print("Fiedler vector: \n",fv)
pos = []
neg = []
ze = []
for i in range(n):

#print(fv[i])
if (fv[i]>0):

pos.append(i+1)
elif (fv[i]<0):

neg.append(i+1)
else:

ze.append(i+1)
print("+: ",pos,"\n-: ",neg,"\n0: ",ze)

7

Eigenvalues:
[0, 0.6313506281127615?, 1.473842397735243?, 3, 3.787710597426518?,

5.107096376725478?]

Fiedler vector:
[1.0, 2.7126046, 2.7126046, -0.4460601, -1.6104998, -4.3686494]

+: [1, 2, 3]
-: [4, 5, 6]
0: []

8

[5]: e = [(1,6), (1,7), (1,8), (1,9), (1,10), (2,6), (2,7), (2,8), (2,9), (2,10),␣
↪→(3,6), (3,7), (3,8), (3,9), (3,10), (4,6), (4,7), (4,8), (4,9), (4,10), (5,6),␣
↪→(5,7), (5,8), (5,9), (5,10)]

H = Graph()
H.add_edges(e)
L = H.laplacian_matrix()
u = L.eigenvalues()
u.sort()
n = L.nrows()
I = matrix.identity(n)
v = (L-u[1]*I).kernel().basis()
H.show()
fv = []
for i in v[0]:

fv.append(round(i, ndigits=7))
print("Eigenvalues:\n ",u, "\n")
print("Fiedler vector: \n",fv)
pos = []
neg = []
ze = []
for i in range(n):

#print(fv[i])
if (fv[i]>0):

pos.append(i+1)
elif (fv[i]<0):

neg.append(i+1)
else:

ze.append(i+1)
print("+: ",pos,"\n-: ",neg,"\n0: ",ze)

9

Eigenvalues:
[0, 5, 5, 5, 5, 5, 5, 5, 5, 10]

Fiedler vector:
[1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

+: [1]
-: [5]
0: [2, 3, 4, 6, 7, 8, 9, 10]

10

	Introduction
	Basic Facts

	Developing the solution
	Mathematically modelling the problem
	Spectral Graph Theory

	The Main Theorem
	Examples
	Some natural questions
	What effect does connectedness have on _2 (of L)?
	What if all entries in the Fiedler vector are positive?
	How to balance the 0's (if at all) in the Fiedler vector?

