Real Analysis

Cantor Set

November 06, 2021

1 Defining the Cantor set

For a set $S \subseteq \mathbb{R}$, we let $a \cdot S:=\{a x: x \in S\}, a+S:=\{a+x: x \in S\}$ for any $a \in \mathbb{R}$.
Start with $\mathscr{F}_{3}:=[0,1]$. Inductively define $\mathscr{F}_{k+1}:=\left(\frac{1}{3} \mathscr{F}_{k}\right) \cup\left(\frac{2}{3}+\frac{1}{3} \mathscr{F}_{k}\right)$. For example, $\mathscr{F}_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$ and $\mathscr{F}_{2}=$ $\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{3}{9}\right] \cup\left[\frac{6}{9}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$. By induction, \mathscr{F}_{k} is a union of 2^{k} disjoint closed intervals. We define $\mathscr{F}:=\bigcap_{k \in \mathbb{N}} \mathscr{F}_{k}$ to be the Cantor set. Note, $\mathscr{F}_{k} \supseteq \mathscr{F}_{k+1}$. So this is a decreasing sequence of nonempty compact sets, which means \mathscr{F} is nonempty. In fact, this is compact (closed because intersection of closed sets, bounded because contained in $[0,1]$). We will eventually show that \mathscr{F} is an uncountable set.
For now, note that \mathscr{F} is closed. Take any $a, b \in \mathbb{R}$ with $a<b$. Take $m \in \mathbb{N}$ to be such that $3^{m}>\frac{6}{b-a}$. For such a choice of $m,\left(\frac{3 k+1}{3^{m}}, \frac{3 k+2}{3^{m}}\right) \subset(a, b)$. But, by the description of \mathscr{F} is is not hard to see that $\left(\frac{3 k+1}{3^{m}}, \frac{3 k+2}{3^{m}}\right) \cap \mathscr{F}=$ $\varnothing \forall k, m \geq 1$. It follows that \mathscr{F} cannot contain any open ball, whence $F^{o}=\varnothing$. By definition, \mathscr{F} is rare or nowhere dense.

2 Ternary expansions

Consider a sequence of numbers $\mathfrak{A}=\left(a_{i}\right)_{i \in \mathbb{N}}$ taking values in $\{0,1,2\}$. We define a rule $f(\mathfrak{A}):=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$. Note that the sequence given by $S_{n}=\sum_{i=1}^{n} \frac{a_{i}}{3^{i}}$ is an increasing sequence. Further $S_{n} \leq \sum_{i=1}^{n} \frac{2}{3^{i}} \leq \frac{2}{3} \cdot \frac{1}{1-\frac{1}{3}}=1 \forall n$. So, $\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ is a real number in $[0,1]$. So $f:\{0,1,2\}^{\mathbb{N}} \rightarrow[0,1]$ is a well defined function. We will show that f is surjective but not injective.

Proposition $1 f$ is not injective.
Proof Consider the sequences $\mathfrak{A}_{1}=(1,0,0,0, \cdots), \mathfrak{A}_{2}=(0,2,2,2, \cdots)$. We note that $f\left(\mathfrak{A}_{1}\right)=\frac{1}{3}$ and that $f\left(\mathfrak{A}_{2}\right)=$ $\sum_{i=2}^{\infty} \frac{2}{3}=\frac{2}{9} \cdot \frac{1}{1-\frac{1}{3}}=\frac{1}{3}$. So we have found $\mathfrak{A}_{1} \neq \mathfrak{A}_{2}$ with $f\left(\mathfrak{A}_{1}\right)=f\left(\mathfrak{A}_{2}\right)$.
We do a somewhat more general analysis and determine exactly what are the cases when curious things as above happen). That is, we ask that if two sequences $\mathfrak{A}=\left(a_{n}\right), \mathfrak{B}=\left(b_{n}\right)$ satisfy that $f(\mathfrak{A})=f(\mathfrak{B})$, then what are the conditions on $\mathfrak{A}, \mathfrak{B}$.
So we are assuming that $\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}=\sum_{i=1}^{\infty} \frac{b_{i}}{3^{i}}$ and that $\mathfrak{A} \neq \mathfrak{B}$. So $\exists k \in \mathbb{N}$ such that $a_{k} \neq b_{k}$, and take k to be the least
such. WLOG assume $a_{k}>b_{k}$. Now $\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}=\sum_{i=1}^{\infty} \frac{b_{i}}{3^{i}} \Longrightarrow \sum_{i=k}^{\infty} \frac{a_{i}}{3^{i}}=\sum_{i=k}^{\infty} \frac{b_{i}}{3^{i}} \Longrightarrow \frac{a_{k}-b_{k}}{3^{k}}+\sum_{i=k+1}^{\infty} \frac{a_{i}}{3^{i}}=\sum_{i=k+1}^{\infty} \frac{b_{i}}{3^{i}}$. Note $\frac{1}{3^{k}} \leq \frac{1}{3^{k}}+\sum_{i=k+1}^{\infty} \frac{a_{i}}{3^{i}} \leq \frac{a_{k}-b_{k}}{3^{k}}+\sum_{i=k+1}^{\infty} \frac{a_{i}}{3^{i}}=\sum_{i=k+1}^{\infty} \frac{b_{i}}{3^{i}} \leq \frac{2}{3^{k+1}} \cdot \frac{3}{2}=\frac{1}{3^{k}}$. This means $\left(a_{i}, b_{i}\right)=(0,2) \forall i>k, a_{k}-b_{k}=1$. So the only 'curious' cases is one of the following two types:

$$
0 . s_{1} s_{2} \cdots s_{m} 1000 \cdots=0 . s_{1} s_{2} \cdots s_{m} 0222 \cdots \quad 0 . s_{1} s_{2} \cdots s_{m} 2000 \cdots=0 . s_{1} s_{2} \cdots s_{m} 1222 \cdots
$$

But the set of these numbers is just the set of all numbers of the form $\frac{t}{3^{k}}$.
Now define a function $g:[0,1] \rightarrow\{0,1,2\}^{\mathbb{N}}$. First we say that if $x=\frac{t}{3^{k}}$ for some integers $t, k \geq 0$ we take the ternary expansion which has lesser usage of 1 's.
Now for any other $x \in[0,1]$, indutively define a sequence $\mathfrak{A}=\left(a_{n}\right) \in\{0,1,2\}^{\mathbb{N}}$ as follows: Let a_{1} be largest so that $\frac{a_{1}}{3} \leq x$; and we let a_{m+1} to be the largest so that $\frac{a_{m+1}}{3^{m+1}} \leq x-\sum_{i=1}^{m} \frac{a_{i}}{3^{i}}$. By induction, it follows that $0 \leq x-\sum_{i=1}^{m} \frac{a_{i}}{3^{i}}<\frac{1}{3^{m}}$. This gives a sequence \mathfrak{A} such that $\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}=x$. It's not hard to see that $f(g(x))=x \forall x \in[0,1]$. In other words, we have proved the

Proposition $2 f$ is surjective.

3 Relation between \mathscr{F} and ternary expansion

From now on, whenever we say 'the ternary expansion of x ' we always mean $\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ where $\left(a_{n}\right)=g(x)$. And we will mean $\{1, \cdots, n\}$ when we write [n]. Also, for a sequence $\mathfrak{A}=\left(a_{n}\right)$ we define the $i^{\text {th }}$ projection map as $\pi_{i}(\mathfrak{A}):=a_{i}$. Let $\mathscr{G}_{1}:=\left\{x \in[0,1]: \pi_{j}(g(x)) \neq 1 \forall j \in[1]\right\}$, that is, the set of all $x \in[0,1]$ such that the first term in its ternary expansion is not 1 . It is not hard to see that $\mathscr{G}_{1}=\mathscr{F}_{1}$. Indeed, $\pi_{1}(g(x))=1 \Leftrightarrow x \in\left(\frac{1}{3}, \frac{2}{3}\right)$. Similarly define $\mathscr{G}_{2}:=\left\{x \in[0,1]: \pi_{j}(g(x)) \neq 1 \forall j \in[2]\right\}$ and observe that $\mathscr{\mathscr { G }}_{2}=\mathscr{F}_{2}$. In fact, it is true that $\mathscr{G}_{n}=\mathscr{F}_{n} \forall n \in \mathbb{N}$ where $\mathscr{G}_{n}:=\left\{x \in[0,1]: \pi_{j}(g(x)) \neq 1 \forall j \in[n]\right\}$. It is thus clear that $\mathscr{G}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}_{k}=\bigcap_{k \in \mathbb{N}} \mathscr{F}_{k}=F$. But, $\mathscr{G}=f\left(\{0,2\}^{\mathbb{N}}\right)$. By our earlier discussion, we have seen exactly when f fails to be injective. In particular $\left.f\right|_{\{0,2\}^{\mathbb{N}}}$ is injective. Uncountability of $\{0,2\}^{\mathbb{N}}$ implies the uncountability of \mathscr{F}.

Corollary $3 \forall r>0, a \in \mathscr{F}, \exists b \in \mathscr{F}$ such that $0<|b-a|<r$. In other words, \mathscr{F} has no isolated point.
Proof Let $r>0, a \in \mathscr{F}$. Take $m \in \mathbb{N}$ to be such that $3^{m}>\frac{2}{r}$. Say $g(a)=\left(a_{n}\right)$.
Define $\mathfrak{B}:=\left(a_{1}, \cdots, a_{m-1}, 2-a_{m}, a_{m+1}, a_{m+2}, \cdots\right)$ and $b:=f(\mathfrak{B})$. Clearly $|b-a|=\frac{2}{3^{m}} \in(0, r)$.
Finally, we exhibit a surjection $\mathscr{F} \rightarrow[0,1]$. Note that $\tilde{g}:=\left.g\right|_{\mathscr{G}}=\left.g\right|_{\mathscr{F}}$ is a surjection whose image is $\{0,2\}^{\mathbb{N}}$. Next define $h:\{0,2\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ by $\left(a_{n}\right) \stackrel{h}{\rightarrow}\left(\frac{\pi_{n}\left(a_{n}\right)}{2}\right)$. b is surjective as well. Lastly, notice that the map $\rho:\{0,1\}^{\mathbb{N}} \rightarrow[0,1]$ given by $\left(a_{n}\right) \mapsto \sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}$ is well defined and a surjection (by the same argument used to prove proposition (2). The surjectivity of all these maps proves the surjectivity of $(\rho \circ h \circ \tilde{g}): \mathscr{F} \rightarrow[0,1]$.
In short, if the ternary expansion of $x \in \mathscr{F}$ is $\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ (so that each $a_{n} \in\{0,2\}$) then we map it to $\sum_{n=1}^{\infty} \frac{a_{n} / 2}{2^{n}}$. This is well defined because the ternary representation of elements of \mathscr{F} is unique.

